## ITा

## 08 - Amortized Analysis

## Amortization

- Consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of $n$ operations performed on a data structure $D$
- $T_{i}=$ execution time of $a_{i}$
- $T=T_{1}+T_{2}+\ldots+T_{n}$ total execution time
- The execution time of a single operation can vary within a large range, e.g. in $1, \ldots, n$, but the worst case does not occur for all operations of the sequence.
- Average execution time of an operation, i.e. $1 / n \cdot \Sigma_{1 \leq i \leqslant n} T_{i,}$, is small even though a single operation can have a high execution time.


## Analysis of algorithms

- Best case
- Worst case
- Average case
(Too optimistic)
(Sometimes very pessimistic)
(Input drawn according to a probability distribution. However, distribution might not be known, or input is not generated by a distribution.)
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

## Amortization

## Idea:

- Pay more for inexpensive operations
- Use the credit to cover the cost of expensive operations

Three methods:

1. Aggregate method
2. Accounting method
3. Potential method

## 1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

| Operation | Counter value | Cost |
| :---: | :---: | :---: |
| 1 | 00000 |  |
| 2 | 00001 | 1 |
| 3 | 00010 | 2 |
| 4 | 00011 | 1 |
| 5 | 00100 | 3 |
| 6 | 00101 | 1 |
| 7 | 00110 | 2 |
| 8 | 00111 | 1 |
| 9 | 01000 | 4 |
| 10 | 01001 | 1 |
| 11 | 01010 | 2 |
| 12 | 01011 | 1 |
| 13 | 01100 | 3 |
|  | 01101 | 1 |

## Binary counter

In gneral:
For any $n$, estimate the total time of $n$ increment operations.

## Show:

Amortized cost of an operation is upper bounded by $c$.
$\rightarrow$ Total cost is upper bounded by cn .

## 2. The accounting method

## Observation:

In each operation exactly one 0 flips to 1 .

## Idea:

Pay two cost units for flipping a 0 to a 1
$\rightarrow$ each 1 has one cost unit deposited in the banking account

## The accounting method

| Operation | Counter value |
| :---: | :---: |
|  | 000000 |
| 2 | 00001 |
| 3 | 00010 |
| 4 | 00011 |
| 5 | 00100 |
| 6 | 00101 |
| 7 | 001110 |
| 8 | 00111 |
| 9 | 01000 |
| 10 | 01001 |
|  | 01010 |

## The accounting method

| Operation | Counter value | Actual cost | Payment | Credit |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 00000 |  |  |  |
| 2 | 00001 | 1 | 2 | 1 |
| 3 | 00010 | 2 | $0+2$ | 1 |
| 4 | 00011 | 1 | 2 | 2 |
| 5 | 00100 | 3 | $0+0+2$ | 1 |
| 6 | 00101 | 1 | 2 | 2 |
| 7 | 00110 | 2 | 2 | 2 |
| 9 | 00111 | 1 | $0+0+0+2$ | 2 |
| 10 | 01000 | 4 | 2 | 2 |
| 0 | 01010 | 1 | $0+2$ | 2 |

We only pay from the credit when flipping a 1 to a 0.

## 3. The potential method

## Potential function $\Phi$

Data structure $D \rightarrow \Phi(D)$
$t_{i}=$ actual cost of the $i$-th operation
$\Phi_{i}=$ potential after execution of the $i$-th operation $\left(=\Phi\left(D_{i}\right)\right)$
$a_{i}=$ amortized cost of the $i$-th operation

## Definition:

$$
a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}
$$

## Example: binary counter

$D_{i}=$ counter value after the $i$-th operation
$\Phi_{i}=\Phi\left(D_{i}\right)=\#$ of 1's in $D_{i}$

$t_{i}=$ actual bit flip cost of operation $\boldsymbol{i}=b_{i}+1$

$$
a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

## Binary counter

$t_{i}=$ actual bit flip cost of operation $i$
$a_{i}=$ amortized bit flip cost of operation $i$

$$
\begin{aligned}
a_{i} & =\left(b_{i}+1\right)+\left(B_{i-1}-b_{i}+1\right)-B_{i-1} \\
& =2
\end{aligned}
$$

$\Rightarrow \sum_{i=1}^{n} a_{i} \leq 2 n$
$\Rightarrow \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}\left(t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \leq 2 n$
$\Rightarrow \sum_{i=1}^{n} t_{i}=\sum_{i=1}^{n} a_{i}-\Phi\left(D_{n}\right)+\Phi\left(D_{0}\right) \leq 2 n-\Phi\left(D_{n}\right)+\Phi\left(D_{0}\right) \leq 2 n$

## Dynamic tables

## Problem:

Maintain a table supporting the operations insert and delete such that

- the table size can be adjusted dynamically to the number of items
- the used space in the table is always at least a constant fraction of the total space
- the total cost of a sequence of $n$ operations (insert or delete) is $O(n)$.

Applications: hash table, heap, stack, etc.

Load factor $\alpha_{T}$ : number of items stored in the table divided by the size of the table

## Dynamic tables

Dynamic table $T$

size[T]; // size of the table<br>num[T]; // number of items

Initially there is an empty table with 1 slot, i.e. size $[T]=1$ and num $[T]=0$.

## Implementation of 'insert'

insert ( $T, x$ )

1. if num $[T]=\operatorname{size}[T]$ then
2. allocate new table $T^{\text {‘ }}$ with $2 \cdot$ size $T T$ slots;
3. insert all items in $T$ into $T^{\text {; }}$
4. $\quad T:=T^{\prime}$; free table $T^{\prime}$;
5. size[T] := 2•size[T];
6. endif;
7. insert $x$ into $T$;
8. num $[T]:=$ num $[T]+1$;

## Cost of $n$ insertions into an initially empty tald

$t_{i}=$ cost of the $i$-th insert operation

## Worst case:

$t_{i}=1 \quad$ if the table is not full prior to operation $i$
$t_{i}=(i-1)+1 \quad$ if the table is full prior to operation $i$.

Thus $n$ insertions incur a total cost of at most

$$
\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)
$$

Amortized worst case:
Aggregate method, accounting method, potential method

## Potential method

$T$ table with

- $k=$ num[ $T]$ items
- $s=\operatorname{size}[T]$ size


## Potential function

$$
\Phi(T)=2 k-s
$$

## Potential method

## Properties

- $\Phi_{0}=\Phi\left(T_{0}\right)=\Phi($ empty table $)=-1$
- Immediately before a table expansion we have $k=s$, thus $\Phi(T)=k=s$.
- Immediately after a table expansion we have $k=s / 2$, thus $\Phi(T)=2 k-s=0$.
- For all $i \geq 1: \Phi_{i}=\Phi\left(T_{i}\right)>0$ Since $\Phi_{n}-\Phi_{0} \geq 0$

$$
\sum_{i=1}^{n} t_{i} \leq \sum_{i=1}^{n} a_{i}
$$

## Amortized cost $\mathrm{a}_{\mathrm{i}}$ of the $i$-th insertion

$k_{i}=\#$ items stored in $T$ after the $i$-th operation
$s_{i}=$ table size of $T$ after the $i$-th operation

Case 1: $i$-th operation does not trigger an expansion

$$
k_{i}=k_{i-1}+1, s_{i}=s_{i-1}
$$

$$
\begin{aligned}
a_{i} & =1+\left(2 k_{i}-s_{j}\right)-\left(2 k_{i-1}-s_{i-1}\right) \\
& =1+2\left(k_{i}-k_{i-1}\right) \\
& =3
\end{aligned}
$$

## Case 2: $i$-th operation does trigger an expansion

$$
k_{i}=k_{i-1}+1, s_{i}=2 s_{i-1}
$$

$$
\begin{aligned}
a_{i} & =k_{i-1}+1+\left(2 k_{i}-s_{i}\right)-\left(2 k_{i-1}-s_{i-1}\right) \\
& =2\left(k_{i-1}+1\right)-k_{i-1}+1-2 s_{i-1}+s_{i-1} \\
& =k_{i-1}+3-s_{i-1} \\
& =3
\end{aligned}
$$

## Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

## Goal:

(1) The load factor is bounded from below by a constant.
(2) The amortized cost of a table operation is constant.

First approach

- Expansion: as before
- Contraction: Halve the table size when a deletion would cause the table to become less than half full.


## „Bad" sequence of table operations



Total cost of the sequence of $n$ operations, with $n \geq 2: \quad I_{n / 2}, I, D, D, I, I, D, D$

$$
3 n / 2+\lfloor 1 / 2 \cdot(n / 2-1)\rfloor(n / 2+1)>n^{2} / 8
$$

## Second approach

Expansion: Double the table size when an item is inserted into a full table.

Contraction: Halve the table size when a deletion causes the table to become less than $1 / 4$ full.

Property: At any time the table is at least $1 / 4$ full, i.e.

$$
1 / 4 \leq \alpha(T) \leq 1
$$

What is the cost of a sequence of table operations?

## Analysis of 'insert' and 'delete' operations \| \|

$k=\operatorname{num}[T], \quad s=\operatorname{size}[T], \alpha=k / s$

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{l}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

## Analysis of 'insert' and 'delete' operations \|

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

Immediately after a table expansion or contraction:

$$
s=2 k, \text { thus } \Phi(T)=0
$$

## Analysis of an 'insert' operation

$j$-th operation: $k_{i}=k_{i-1}+1$

Case 1: $\alpha_{i-1} \geq 1 / 2$
Potential function before and after the operation is $\Phi(T)=2 k-s$. We have already proved that the amortized cost is equal to 3 .

Case 2: $\alpha_{i-1}<1 / 2$

Case 2.1: $\alpha_{i}<1 / 2$
Case 2.2: $\alpha_{i} \geq 1 / 2$

## Analysis of an 'insert' operation

Case 2.1: $\alpha_{i-1}<1 / 2, \alpha_{i}<1 / 2$ no expansion

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+\left(s_{i} / 2-k_{i}\right)-\left(s_{i-1} / 2-k_{i-1}\right) \\
& =1-\left(k_{i-1}+1\right)+k_{i-1} \\
& =0
\end{aligned}
$$

## Analysis of an 'insert' operation

Case 2.2: $\alpha_{i-1}<1 / 2, \alpha_{i} \geq 1 / 2$ no expansion

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+\left(2 k_{i}-s_{i}\right)-\left(s_{i-1} / 2-k_{i-1}\right) \\
& =1+2\left(k_{i-1}+1\right)-3 s_{i-1} / 2+k_{i-1} \\
& =3+3\left(k_{i-1}-s_{i-1} / 2\right) \\
& <3
\end{aligned}
$$

The last inequality holds because $k_{i-1} / \mathrm{s}_{i-1}<1 / 2$.

## Analysis of a 'delete' operation

$k_{i}=k_{i-1}-1$
Case 1: $\alpha_{i-1}<1 / 2$
Case 1.1: deletion does not trigger a contraction

$$
s_{i}=s_{i-1}
$$

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+\left(s_{i} / 2-k_{i}\right)-\left(s_{i-1} / 2-k_{i-1}\right) \\
& =1-\left(k_{i-1}-1\right)+k_{i-1} \\
& =2
\end{aligned}
$$

## Analysis of a 'delete' operation

$k_{i}=k_{i-1}-1$
Case 1: $\alpha_{i-1}<1 / 2$
Case 1.2: $\alpha_{i-1}<1 / 2$ deletion does trigger a contraction

$$
s_{i}=s_{i-1} / 2 \quad k_{i-1}=s_{i-1} / 4
$$

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+k_{i-1}+\left(s_{i} / 2-k_{i}\right)-\left(s_{i-1} / 2-k_{i-1}\right) \\
& =1+k_{i-1}+s_{i-1} / 4-\left(k_{i-1}-1\right)-s_{i-1} / 2+k_{i-1} \\
& =2-s_{i-1} / 4+k_{i-1} \\
& =2
\end{aligned}
$$

## Analysis of a 'delete' operation

Case 2: $\alpha_{i-1} \geq 1 / 2$
A contraction only occurs if $s_{i-1}=2$ and $k_{i-1}=1$.
In this case $a_{i}=1+s / 2-k_{i}-\left(2 k_{i-1}-s_{i-1}\right)$
$=1+1 / 2-2+2<2$.

Therefore, in the following, we may assume that no contraction occurs.

## Analysis of a 'delete' operation

Case 2: $\alpha_{i-1} \geq 1 / 2$ no contraction

$$
s_{\mathrm{i}}=s_{i-1} \quad k_{\mathrm{i}}=k_{i-1}-1
$$

Case 2.1: $\alpha_{i} \geq 1 / 2$

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+\left(2 k_{i}-s_{i}\right)-\left(2 k_{i-1}-s_{i-1}\right) \\
& =1+2\left(k_{i-1}-1\right)-2 k_{i-1} \\
& <0
\end{aligned}
$$

## Analysis of a 'delete' operation

Case 2: $\alpha_{i-1} \geq 1 / 2$ no contraction

$$
s_{i}=s_{i-1} \quad k_{i}=k_{i-1}-1
$$

Case 2.2: $\alpha_{i}<1 / 2$

## Potential function $\Phi$

$$
\Phi(T)=\left\{\begin{array}{c}
2 k-s, \text { if } \alpha \geq 1 / 2 \\
s / 2-k, \text { if } \alpha<1 / 2
\end{array}\right.
$$

$$
\begin{aligned}
a_{i} & =1+\left(s_{j} / 2-k_{i}\right)-\left(2 k_{i-1}-s_{i-1}\right) \\
& =1+s_{i-1} / 2-k_{i-1}+1-2 k_{i-1}+s_{i-1} \\
& =2+3\left(s_{i-1} / 2-k_{i-1}\right) \\
& \leq 2
\end{aligned}
$$

The last inequality holds because $k_{i-1} \geq \mathrm{s}_{i-1} / 2$.

