ITा

11 - Dynamic Programming (1) Introduction

Weighted Interval Scheduling

Outline

- General approach, differences to a recursive solution
- Basic example: Computation of the Fibonacci numbers
- Weighted interval scheduling

Method of dynamic programming

Recursive approach: Solve a problem by solving several smaller analogous subproblems of the same type. Then combine these solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been solved, store its solution in a table so that it can be retrieved later by simple table lookup.

Example: Fibonacci numbers

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=f(n-1)+f(n-2), \text { for } n \geq 2
\end{aligned}
$$

Remark:

$$
f(n)=\left[\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right]
$$

Straightforward implementation:
procedure fib (n : integer) : integer
if $(n=0)$ or $(n=1)$
then return n;
else return $f i b(n-1)+f i b(n-2)$;

Fibonacci numbers

Recursion tree:

Repeated computation!

Dynamic programming

Approach:

1. Recursively define problem P.
2. Determine a set T consisting of all subproblems that have to be solved during the computation of a solution to P.
3. Find an order T_{0}, \ldots, T_{k} of the subproblems in T such that during the computation of a solution to T_{i} only subproblems T_{j} with $j<i$ arise.
4. Solve T_{0}, \ldots, T_{k} in this order and store the solutions.

Fibonacci numbers

1. Recursive definition of the Fibonacci numbers, based on the standard equation.
2. $T=\{f(0), \ldots, f(n)\}$
3. $T_{i}=f(i), \quad i=0, \ldots, n$
4. Computation of $f i b(i)$, for $i \geq 2$, only requires the results of the last two subproblems fib($i-1$) and $f i b(i-2)$.

Fibonacci numbers

Computation by dynamic programming, version 1 :
procedure $\mathrm{fib}(n$: integer) : integer
1 F[0]:=0; F[1]:=1;
2 for $k:=2$ to n do
$3 \quad F k]:=F[k-1]+F[k-2]$;
4 return $\mp n]$;

Fibonacci numbers

Computation by dynamic programming, version 2 :
procedure fib (n : integer) : integer
$1 \quad F($ secondlast $):=0 ; F($ last $):=1$;
2 for $k:=2$ to n do
$3 \quad F($ current $):=F($ last $)+F($ secondlast $)$;
$4 \quad F($ secondlast $):=F($ last $)$;
$5 \quad F($ last $):=F($ current $)$;
6 if $n \leq 1$ then return n else return $F($ current);

Linear running time, constant space requirement!

Recursive computation using memoization \|

Compute each number exactly once, store it in an array $F[0 \ldots n]$:
procedure fib (n : integer) : integer
1 F[0]:=0; F[1]:=1;
2 for $i:=2$ to n do
$\left.3 \quad F_{l}\right]:=\infty$;
4 return lookupfib(n);
The procedure lookupfib is defined as follows:
procedure lookupfib(k: integer) : integer
1 if $F k]<\infty$
2 then return $F k]$;
3 else $F k]$:= lookupfib($k-1$) + lookupfib($k-2$);
4 return $F k]$;

Weighted interval scheduling

Problem: Set $S=\{1, \ldots, n\}$ of n requests for a resource.
Request $i:[s(i), f(i)) \quad s(i)=$ start time $\quad f(i)=$ finish time
$v(i)=$ value/weight

Two requests are compatible if they do not overlap.
Goal: Select $S \subseteq\{1, \ldots, n\}$ of mutually compatible requests so as to maximize $\Sigma_{i \in S} v(i)$.

Greedy* (Earliest Deadline First) is not optimal.

Predecessor function

In the following, requests are numbered such that

$$
f(1) \leq f(2) \leq f(3) \leq \ldots \leq f(n) .
$$

For $j=1, \ldots, n$ $p(j)=$ largest $i<j$ such that requests i and j do not overlap $p()=0$ if no request $i<j$ is disjoint from j

Dynamic programming approach

$O=$ optimal subset of requests

- $n \notin O$: O is an optimal subset of $\{1, \ldots, n-1\}$
- $n \in O$: remaining requests in O are an optimal subset of $\{1, \ldots, p(n)\}$

For $j=1, \ldots, n$
$O_{j}=$ optimal subset of requests from $\left.\{1, \ldots\},\right\}$
OPT(j) = value of an optimal solution $\quad \mathrm{OPT}(0):=0$

- $j \notin O_{j}: O_{j}$ is an optimal subset of $\{1, \ldots, j-1\}$
- $j \in O_{j}$: remaining requests in O_{j} are an optimal subset of $\{1, \ldots, p(j)\}$

Dynamic programming approach

For $j=1, \ldots, n$
$O_{j}=$ optimal subset of requests from $\left.\{1, \ldots\},\right\}$
OPT()) = value of an optimal solution $\quad \mathrm{OPT}(0):=0$

- $j \notin O_{j}: O_{j}$ is an optimal subset of $\{1, \ldots, j-1\}$
- $j \in O_{j}$: remaining requests in O_{j} are an optimal subset of $\{1, \ldots, p(j)\}$

$$
\mathrm{OPT}(j)=\max \{v(j)+\mathrm{OPT}(p(j)), \mathrm{OPT}(j-1)\}
$$

Request j belongs to an optimal solution for $\{1, \ldots$,$\} if and only if$

$$
v(j)+\mathrm{OPT}(p(j)) \geq \mathrm{OPT}(j-1) .
$$

Straightforward implementation

Assume that values $p(j)$, for $j=1, \ldots, n$, have been computed.
procedure ComputeOpt(j : integer)
1 if $j=0$
2 then return 0;
3 else return $\max \{v(j)+\mathrm{OPT}(p(j)), \mathrm{OPT}(j-1)\}$;

Instance taking exponential time

Iterative solution

Array M[0..n] contains the values of the optimal solutions.

```
procedure ComputeOpt( \(n\) : integer)
\(1 \mathrm{M}[0]:=0\);
2 for \(j:=1\) to \(n\) do
\(3 \quad \mathrm{M}[]:=\max \{v(j)+\mathrm{M}[p(\mathrm{j})], \mathrm{M}[j-1]\}\);
4 endfor;
```

Running time: $\mathrm{O}(n)$

Recursion using memoization

procedure ComputeOpt(j : integer)
1 if $j=0$ then
2 return 0;
else if $M[J]$ is not empty then
4 return M[];
5 else
6 M[]$:=\max \{v(j)+$ ComputeOPT $(p(j))$, ComputeOpt $(j-1)\}$;
7 return M[];
8 endif;
Proposition: The running time of ComputeOpt (n) is $\mathrm{O}(n)$ if the requests are sorted in order of non-decreasing finish times and the values $p(J)$, $1 \leq j \leq n$, are computed.
Proof: The running time is a constant times the number of recursive calls to ComputeOpt. Two calls are issued whenever a new array entry is filled. Hence there are a total of at most $2 n$ calls.

Computing a solution

procedure FindSolution(j : integer)
1 if $j=0$ then
2 Output nothing;
3 else if $v(J)+\mathrm{M}[p(j)] \geq \mathrm{M}[j-1]$ then
4 Output j together with the result of FindSolution $(p(j))$;
5 else
6 Output the result of FindSolution($j-1$);
7 endif;

FindSolution calls itself only on strictly smaller values. Therefore
FindSolution (n) issues less than n recursive calls and the running time is $\mathrm{O}(n)$.

