ITI

12 - Dynamic Programming (2)

 Matrix-chain Multiplication
Segmented Least Squares

Optimal substructure

Dynamic programming is typically applied to optimization problems.

An optimal solution to the original problem contains optimal solutions to smaller subproblems.

Matrix-chain multiplication

Given: Sequence (chain) $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of matrices

Goal: Compute the product $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$.

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.

Multiplying two matrices

$A=\left(a_{i j}\right)_{p \times q}, B=\left(b_{i j}\right)_{q \times r}, A \cdot B=C=\left(c_{i j}\right)_{p \times r}$,

$$
c_{i j}=\sum_{k=1}^{q} a_{i k} b_{k j} .
$$

Algorithm Matrix-Mult
Input: $\quad(p \times q)$ matrix $A,(q \times r)$ matrix B
Output: $(p \times r)$ matrix $C=A \cdot B$
1 for $i:=1$ to p do
2 for $j:=1$ to r do
$3 \quad C[i, j]:=0$
4 for $k:=1$ to q do
$5 \quad C[i, j]:=C[i, j]+A[i, k] \cdot B[k, j]$
Number of multiplications and additions: $p \cdot q \cdot r$
Remark: Using this algorithm, multiplying two $(n \times n)$ matrices requires n^{3} multiplications. This can also be done using $\mathrm{O}\left(n^{2.376}\right)$ multiplications.

Matrix-chain multiplication: Example

Computation of the product $A_{1} A_{2} A_{3}$, where
$A_{1}:(10 \times 100)$ matrix
$A_{2}:(100 \times 5)$ matrix
$A_{3}:(5 \times 50)$ matrix

Parenthesization $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ requires
$A^{\prime}=\left(A_{1} A_{2}\right): 10 \cdot 100 \cdot 5=5000$
$A^{\prime} A_{3}: 10 \cdot 5 \cdot 50=2500$

Sum: 7500

Matrix-chain multiplication: Example

$A_{1}:(10 \times 100)$ matrix
$A_{2}:(100 \times 5)$ matrix
$A_{3}:(5 \times 50)$ matrix

Parenthesization $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ requires
$A^{\prime \prime}=\left(A_{2} A_{3}\right): 100 \cdot 5 \cdot 50=25000$
$A_{1} A^{\prime \prime}: 10 \cdot 100 \cdot 50=50000$

Sum: 75000

Fully parenthesized matrix products

All possible fully parenthesized matrix products of the chain $\left\langle A_{1}, A_{2}, A_{3}, A_{4}\right\rangle$ are:

$$
\begin{aligned}
& \left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right) \\
& \left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right) \\
& \left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right) \\
& \left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right) \\
& \left.\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)
\end{aligned}
$$

Number of different parenthesizations

Different parenthesizations correspond to different trees (selection).

Number of different parenthesizations

Let $P(n)$ be the number of alternative parenthesizations of the product $A_{1} \ldots A_{k} A_{k+1} \ldots A_{n}$.

$$
\begin{aligned}
& P(1)=1 \\
& P(n)=\sum_{k=1}^{n-1} P(k) P(n-k) \quad \text { for } n \geq 2 \\
& P(n)=C_{n-1} \quad(n-1)-\text { st Catalan number } \\
& C(n)=\frac{1}{n+1}\binom{2 n}{n} \approx \frac{4^{n}}{n \sqrt{\pi n}}+\mathrm{O}\left(\frac{4^{n}}{\sqrt{n^{5}}}\right)
\end{aligned}
$$

Remark: Determining the optimal parenthesization by exhaustive search is not reasonable.

Matrix-chain multiplication

Given: Sequence $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of matrices Matrix A_{i} has dimension $p_{i-1} \times p_{i}$, for $i=1, \ldots, n$.

Goal: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Structure of an optimal parenthesization $\boldsymbol{~}$

Subproblems $A_{i . . . j} \quad 1 \leq i \leq j \leq n$

$$
A_{i . . . i}=A_{i} \quad A_{i . . . j}=\left(A_{i . . . k}\right)\left(A_{k+1 . . . j}\right) \quad i \leq k<j
$$

Any optimal solution to the matrix-chain multiplication problem contains optimal solutions to subproblems. Determine an optimal solution recursively.

Let $m[i, j]$ be the minimum number of operations needed to compute the product $A_{i, . . j}$.
$m[i, j]=0 \quad$ if $i=j$
$m[i, j]=\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} \quad$ otherwise
$s[i, j]=$ optimal split value k, i.e. the optimal parenthesization of $A_{i . . j}$ splits the product between A_{k} and A_{k+1}

Recursive matrix-chain multiplication

Algorithm RecMatChain(p, i, j)
Input: Sequence $p=\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle$, where $\left(p_{i-1} \times p_{i}\right)$ is the dimensionen of matrix A_{i}
Invariant: RecMatChain (p, i, j) returns $m[i, j]$
1 if $i=j$ then return 0 ;
$2 \mathrm{~m}[i, j]:=\infty$;
3 for $k:=i$ to $j-1$ do
$4 \quad m[i, j]:=\min \left(m[i, j], \quad p_{i-1} p_{k} p_{j}+\right.$
RecMatChain $(p, i, k)+$ RecMatChain $(p, k+1, j)$);
5 return $m[i, j] ;$

Initial call: RecMatChain($p, 1, n$)

Recursive matrix-chain multiplication

Let $T(n)$ be the time taken by rec-mat-chain $(p, 1, n)$.

$$
\begin{aligned}
T(1) & \geq 1 \\
T(n) & \geq 1+\sum_{k=1}^{n-1}(T(k)+T(n-k)+1) \\
& \geq n+2 \sum_{i=1}^{n-1} T(i) \\
& \Rightarrow T(n) \geq 3^{n-1} \quad \text { (induction) }
\end{aligned}
$$

Exponential running time!

Solution using dynamic programming

Algorithm DynMatChain
Input: Sequence $p=\left\langle p_{0,}, p_{1}, \ldots, p_{n}\right\rangle \quad\left(p_{i-1} \times p_{i}\right)$ the dimension of matrix A_{i}
Output: $m[1, n]$
$1 n:=$ length $(p)-1$;
2 for $i:=1$ to n do $m[i, i]:=0$;
3 for $l:=2$ to n do
4 for $i:=1$ to $n-l+1$ do
$5 \quad j:=i+l-1$;
/* $I=$ length of the subproblem */
${ }^{*}$ * i is the left index */
$6 \quad m[i, j]:=\infty$;
7 for $k:=i$ to $j-1$ do
$m[i, j]:=\min \left(m[i, j], p_{i-1} p_{k} p_{j}+m[i, k]+m[k+1, j]\right)$;
9 return $m[1, n]$;

Example

$$
\begin{array}{ll}
A_{1}(30 \times 35) & A_{4}(5 \times 10) \\
A_{2}(35 \times 15) & A_{5}(10 \times 20) \\
A_{3}(15 \times 5) & A_{6}(20 \times 25)
\end{array}
$$

$p=(30,35,15,5,10,20,25)$

Example

$$
p=(30,35,15,5,10,20,25)
$$

Example

$$
\begin{aligned}
m[2,5] & =\min _{2 \leq k<5}\left(m[2, k]+m[k+1,5]+p_{1} p_{k} p_{5}\right) \\
& =\min \left\{\begin{array}{l}
m[2,2]+m[3,5]+p_{1} p_{2} p_{5} \\
m[2,3]+m[4,5]+p_{1} p_{3} p_{5} \\
m[2,4]+m[5,5]+p_{1} p_{4} p_{5}
\end{array}\right.
\end{aligned}
$$

$$
=\min \left\{\begin{array}{c}
0+2500+35 \cdot 15 \cdot 20=13000 \\
2625+1000+35 \cdot 5 \cdot 20=7125 \\
4375+0+35 \cdot 10 \cdot 20=11375
\end{array}\right.
$$

$$
=7125
$$

Including optimal split values

Algorithm DynMatChain(p)

Input: Sequence $p=\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle,\left(p_{i-1} \times p_{i}\right)$ the dimension of matrix A_{i}
Output: $m[1, n]$ and a matrix $s[i, j]$ containing the optimal split values

```
\(1 n\) := length \((p)-1\);
2 for \(i:=1\) to \(n\) do \(m[i, i]:=0\)
3 for \(I:=2\) to \(n\) do
4 for \(i:=1\) to \(n-l+1\) do
\(5 \quad j:=i+l-1\);
\(6 \quad m[i, j]:=\infty\);
7 for \(k:=i\) to \(j-1\) do
\(8 \quad q:=m[i, j]\);
\(9 \quad m[i, j]:=\min \left(m[i, j], p_{i-1} p_{k} p_{j}+m[i, k]+m[k+1, j]\right)\);
10 if \(m[i, j]<q\) then \(s[i, j]:=k\);
11 return ( \(m[1, n], s\) );
```


Example of splitting values

Computation of an optimal parenthesization /

Algorithm OptParenthesization

Input: Chain A of matrices, matrix s containing the optimal split values, two indices i and j
Output: An optimal parenthesization of $A_{i . . . j}$
1 if $i<j$
2 then $X:=\operatorname{OptParenthesization(A,s,i,s[i,~}])$;
$3 \quad Y:=\operatorname{OptParenthesization}(A, s, s[i, j]+1, \lambda)$;
4
return ($X \cdot Y$);
5 else return A_{i};

Initial call: OptParenthesization($A, s, 1, n$)

Dynamic programming; top-down approac

„Memoization" for increasing the efficiency of a recursive solution:

Only the first time a subproblem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned (without repeated computation!).

Memoized matrix-chain multiplication

Algorithm MemMatChain(p, i, j)
Invariant: MemMatChain (p, i, j) returns $m[i, j]$; the value is correct if $m[i, j]<\infty$

1 if $i=j$ then return 0 ;
2 if $m[i, j]<\infty$ then return $m[i, j]$;
3 for $k:=i$ to $j-1$ do
$4 \quad m[i, j]:=\min \left(m[i, j], p_{i-1} p_{k} p_{j}+\right.$ MemMatChain $(p, i, k)+$ MemMatChain $(p, k+1, j)$);
5 return $m[i, j] ;$

Memoized matrix-chain multiplication

Call:
$1 n:=\operatorname{length}(p)-1$;
2 for $i:=1$ to n do
3 for $j:=1$ to n do
$4 \quad m[i, j]:=\infty$;
5 MemMatChain $(p, 1, n)$;
The computation of all entries $m[i, j]$ using MemMatChain takes $\mathrm{O}\left(n^{3}\right)$ time.
$\mathrm{O}\left(n^{2}\right)$ entries.
Each entry $m[i, j]$ is computed once.
Each entry $m[i, j]$ is looked up during the computation of $m\left[i^{\prime}, j^{\prime}\right]$ if
$i^{\prime}=i$ and $j^{\prime}>j$ or $j^{\prime}=j$ and $i^{\prime}<i$.
Thus $m[i, j]$ is looked up during the computation of at most $2 n$ entries.

Remarks about matrix-chain multiplication \|

1. There is an algorithm that determines an optimal parenthesization in time $O(n \log n)$.
2. There is a linear time algorithm that determines a parenthesization using at most $1.155 \cdot M_{\text {opt }}$ multiplications.

Segmented Least Squares

Problem in statistics and numerical analysis

$$
P=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \quad x_{1}<x_{2}<\ldots<x_{n}
$$

Find $L=a x+b$ that minimizes the error of L w.r.t. P.

$$
\operatorname{Error}(L, P)=\Sigma_{1 \leq i \leq n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution

Line $L=a x+b$ where

$$
\begin{aligned}
a & =\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \\
b & =\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\end{aligned}
$$

One line might not suffice

Segmented Least Squares

Problem: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \quad$ where

$$
p_{i}=\left(x_{i} y_{i}\right) \quad \text { for } i=1, \ldots, n \quad x_{1}<x_{2}<\ldots<x_{n}
$$

A segment is a subset $\left\{p_{i}, \ldots, p_{j}\right\} \quad$ where $i \leq j$

Partition P into segments. Penalty is the sum of

- C. \# segments where $C>0$
- For each segment, the error of the optimum line through it.

Goal: Find partition of minimum penalty.

Dynamic programming approach

Last segment is $\left\{p_{i}, \ldots, p_{n}\right\}$ for some $1 \leq i \leq n$.
The remaining segments are an optimal solution for $\left\{p_{1}, \ldots, p_{i-1}\right\}$.

Dynamic programming approach

$\mathrm{OPT}(j)=$ value of an optimal solution for $\left\{p_{1}, \ldots, p_{j}\right\} \quad 1 \leq j \leq n$ OPT(0) := 0
$e_{i, j}=$ minimum error of any line through $\left\{p_{i}, \ldots, p_{j}\right\} \quad 1 \leq i \leq j \leq n$

$$
\begin{aligned}
& \operatorname{OPT}(n)=\min _{1 \leq i \leq n}\left(e_{i, n}+C+\operatorname{OPT}(i-1)\right) \\
& \operatorname{OPT}(j)=\min _{1 \leq i \leq j}\left(e_{i, j}+C+\operatorname{OPT}(i-1)\right)
\end{aligned}
$$

Dynamic programming algorithm

Array $m[0 . . n]$ contains the values of the optimal solutions.

Algorithm SegmentedLeastSquares(n)
$1 \mathrm{~m}[0]:=0$;
2 for all pairs $i \leq j$ do
3 Compute $e_{i, j}$ for segment $\left\{p_{i}, \ldots, p_{j}\right\}$;
4 for $j:=1$ to n do
$5 \mathrm{~m}[j]:=\min _{1 \leq i \leq j}\left(e_{i, j}+C+\mathrm{m}[i-1]\right)$;

Running time: $\mathrm{O}\left(n^{2}\right)$

Computing a solution

Algorithm FindSegments($($)

1 if $j=0$ then
2 Output nothing;
3 else
4 Find an i that minimizes $e_{i, j}+C+m[i-1]$;
5 Output segment $\left\{p_{i}, \ldots, p_{j}\right\}$ and the result of FindSegments $(i-1)$;
6 endif;

