IT

13 - Dynamic Programming (3) Optimal Binary Search Trees Subset Sums \& Knapsacks

Average-case analysis

Average-case analysis of algorithms and data structures: Input is generated according to a known probability distribution. This distribution can be learned over time.

Optimal binary search tree: Request probabilities / frequencies for the keys are known in advance. Construct a binary search tree minimizing the expected / average search time.

Optimal binary search trees

Weighted path length:

$$
3 \cdot 1+2 \cdot(1+3)+3 \cdot 3+2 \cdot(4+10)
$$

Optimal binary search trees

Problem: Set S of keys

$$
S=\left\{k_{1}, \ldots, k_{n}\right\} \quad-\infty=k_{0}<k_{1}<\ldots<k_{n}<k_{n+1}=\infty
$$

a_{i} : (absolute) frequency of requests to key k_{i}
b_{j} : (absolute) frequency of requests to $x \in\left(k_{j}, k_{j+1}\right)$

Weighted path length $P(T)$ of a binary search tree T for S :

$$
P(T)=\sum_{i=1}^{n}\left(\operatorname{depth}\left(k_{i}\right)+1\right) a_{i}+\sum_{j=0}^{n} \operatorname{depth}\left(\left(k_{j}, k_{j+1}\right)\right) b_{j}
$$

Goal: Binary search tree with minimum weighted path length P for S.

Example

$P\left(T_{1}\right)=21$

$P\left(T_{2}\right)=27$

Construction of optimal binary search tree \|

An optimal binary search tree is a binary search tree with minimum weighted path length.

Dynamic programming approach

T

$$
\begin{aligned}
P(T) & =\mathrm{P}\left(T_{l}\right)+\mathrm{W}\left(T_{l}\right)+\mathrm{P}\left(T_{r}\right)+\mathrm{W}\left(T_{r}\right)+a_{k} \\
& =\mathrm{P}\left(T_{l}\right)+P\left(T_{r}\right)+W(T) \\
W(T) & :=\text { total weight of all nodes in } T
\end{aligned}
$$

If T is a tree with minimum weighted path length for S, then subtrees T_{l} and T_{r} are trees with minimum weighted path length for subsets of S.

Definition of subproblems

$T(i, j)$: optimal binary search tree for $\left(k_{i}, k_{i+1}\right) k_{i+1} \ldots k_{j}\left(k_{j}, k_{j+1}\right)$
$W(i, j)$: weight of $T(i, j)$, i.e. $W(i, j)=b_{i}+a_{i+1}+\ldots+a_{j}+b_{j}$
$P(i, j)$: weighted path length of $T(i, j)$

Subproblems

Recurrences

$$
\begin{array}{ll}
W(i, i)=b_{i} & \text { for } 0 \leq i \leq n \\
W(i, j)=W(i, j-1)+a_{j}+b_{j} & \text { for } 0 \leq i<j \leq n \\
P(i, i)=0 & \text { for } 0 \leq i \leq n \\
P(i, j)=W(i, j)+\min _{i<1 \leq j}\{P(i, I-1)+P(l, j)\} & \text { for } 0 \leq i<j \leq n \tag{*}
\end{array}
$$

$r(i, j)=$ the index / for which the minimum is achieved in (*) (index of key in the root)

Bottom-up approach

Base cases

Case 1: $s=j-i=0$

$$
\begin{aligned}
& T(i, i)=\left(k_{i}, k_{i+1}\right) \\
& W(i, i)=b_{i} \\
& P(i, i)=0 \\
& r(i, i) \text { not defined }
\end{aligned}
$$

Bottom-up approach

Case 2: $s=j-i=1$
$T(i, i+1)$

$W(i, i+1)=b_{i}+a_{i+1}+b_{i+1}=W(i, i)+a_{i+1}+W(i+1, i+1)$
$P(i, i+1)=W(i, i+1)$
$r(i, i+1)=i+1$

Bottom-up approach

Case 3: $s=j-i>1$

1 for $s:=2$ to n do
2 for $i:=0$ to $n-s$ do
$3 \quad j:=i+s$;
4 Determine (greatest) $I, i<I \leq j$, s.t. $P(i, I-1)+P(I, j)$ is minimal;
$5 \quad W(i, j):=W(i, j-1)+a_{j}+b_{j}$;
$6 \quad P(i, j):=P(i, l-1)+P(l, j)+W(i, j)$;
$7 \quad r(i, j):=1$;
8 endfor;
9 endfor;

Computing solution $P(0, n)$ takes $O\left(n^{3}\right)$ time and requires $O\left(n^{2}\right)$ space.

Improvement

Lemma: For all i, j such that $0 \leq i<j \leq n, r(i, j-1) \leq r(i, j) \leq r(i+1, j)$.

Given this lemma, for fixed s, the total time of the inner for-loop is:

$$
\begin{aligned}
& \mathrm{O}\left(n-s+\sum_{i=0}^{n-s}(r(i+1, i+s)-r(i, i+s-1)+1)\right) \\
& =\mathrm{O}(n-s+r(1, s)-r(0, s-1)+1 \\
& \\
& +r(2, s+1)-r(1, s)+1 \\
& \\
& +r(3, s+2)-r(2, s+1)+1 \\
& \cdots \\
& \\
& \quad+r(n-s+1, n)-r(n-s, n-1)+1) \\
& =\mathrm{O}(n-s+r(n-s+1, n)-r(0, s-1)) \\
& =\mathrm{O}(n)
\end{aligned}
$$

Improvement

Proof of the Lemma: Induction on $s=j-i$.
For $s=1$, the statement is vacuous. So consider $s=2$.
In $T(i, i+1)$ key k_{i+1} is in the root, so that $r(i, i+1)=i+1$. In $T(i+1, i+2)$ key k_{i+2} is in the root, so that $r(i+1, i+2)=i+2$. In $T(i, i+2)$ key k_{i+1} or k_{i+2} can reside in the root, which implies $r(i, i+2) \in\{i+1, i+2\}$ and the desired inequality holds.

We study $s>2$ and prove $r(i, j-1) \leq r(i, j)$. The second inequality $r(i, j) \leq$ $r(i+1, j)$ can be shown analogously. Consider an optimal tree $T(i, j-1)$. Replace leaf (k_{j-1}, k_{j}) by a node containing k_{j} along with the leaves $\left(k_{j-1}, k_{j}\right)$ and $\left(k_{j}, k_{j+1}\right)$. Let T be the resulting tree. There holds

$$
P(T)=P(i, j-1)+b_{j-1}+(d+1)\left(a_{j}+b_{j}\right),
$$

where d denotes the depth of k_{j} in T.

Proof of the lemma

Suppose that $P(T)>P(i, j)$ since otherwise we are done.
Consider an optimal tree $T(i, j)$ and let d^{*} be the depth of k_{j}.

Claim 1: There holds $d>d^{\prime}$.
For the proof of the claim take $T(i, j)$ and replace key k_{j} along with leaves $\left(k_{j-1}, k_{j}\right)$ and $\left(k_{j}, k_{j+1}\right)$ by leaf $\left(k_{j-1}, k_{j}\right)$. The resulting tree has a weighted path length of

$$
\begin{aligned}
& P(i, j)-b_{j-1}-\left(d^{\prime}+1\right)\left(a_{j}+b_{j}\right)<P(T)-b_{j-1}-\left(d^{\prime}+1\right)\left(a_{j}+b_{j}\right) \\
& =P(i, j-1)+\left(d-d^{\prime}\right)\left(a_{j}+b_{j}\right) .
\end{aligned}
$$

Hence, if $d \leq d^{d}$, the resulting tree has a weighted path length strictly smaller than $P(i, j-1)$, contradicting the optimality of $T(i, j-1)$.

In T and $T(i, j)$ consider the paths from the root to k_{j}; cf. the figure on the next page.

Proof of the lemma

Suppose that $r_{1}>r_{1}^{\prime}$; otherwise there is nothing to show.
Claim 2: There exists an / such that $r_{l}=r_{l}^{\prime}$.
By assumption $r_{1}^{\prime}<r_{1}$. The induction hypothesis implies $r_{2}^{\prime} \leq r_{2}$. If $r_{2}^{\prime}<r_{2}$, then $r_{3}^{\prime} \leq r_{3}$. In general if $r_{l-1}^{\prime}<r_{l-1}$, the induction hypothesis implies $r_{l}^{\prime} \leq r_{l}$. Since $d^{\prime}<d$ and k_{j} is the largest key in the trees, there must exist an / such that $r_{l}=r_{l}^{\prime}$.

In T we now replace the right subtree of $k_{r_{l}}$ by the corresponding subtree in $T(i, j)$. The new tree has a minimum weighted path length: Otherwise in $T(i, j-1)$ the nodes containing $k_{r_{1}}, \ldots, k_{r_{l}}$ and their left subtrees could be replaced by the corresponding structure in $T(i, j)$, contradicting the optimality of $T(i, j-1)$.
In the new, optimal tree key $k_{r_{1}}$ is in the root.

Main result

Theorem:

An optimal binary search tree for n keys and $n+1$ intervals with known request frequencies can be constructed in $O\left(n^{2}\right)$ time.

Subset Sums and Knapsacks

Subset Sum Problem: n items $\{1, \ldots, n\}$
Item i has a non-negative weight w_{i}. Bound $W \geq 0$
Goal: Find $S \subseteq\{1, \ldots, n\}$ that maximizes $\Sigma_{i \in S} w_{i}$ subject to the restriction $\Sigma_{i \in S} W_{i} \leq W$.

Knapsack Problem: n items $\{1, \ldots, n\}$
Item i has a non-negative weight w_{i} and a value v_{i}. Bound $W \geq 0$
Goal: Find $S \subseteq\{1, \ldots, n\}$ that maximizes $\Sigma_{i \in S} v_{i}$ subject to the restriction $\Sigma_{i \in S} W_{i} \leq W$.

Subset Sums: Dynamic programming

Assume that $W \in \mathbb{N}$ and $w_{i} \in \mathbb{N}$ for $i=1, \ldots n$.

For $1 \leq i \leq n$ and each integer w with $0 \leq w \leq W$

$$
\operatorname{OPT}(i, w)=\max _{S} \Sigma_{j \in S} w_{j} \quad \text { where } S \subseteq\{1, \ldots, i\} \text { and } \Sigma_{j \in S} w_{j} \leq w .
$$

O = optimal solution

- $n \notin O: \operatorname{OPT}(n, W)=\operatorname{OPT}(n-1, W)$
- $n \in O: \operatorname{OPT}(n, W)=w_{n}+\operatorname{OPT}\left(n-1, W-w_{n}\right)$

If $w<w_{i}$, then $\operatorname{OPT}(i, w)=\operatorname{OPT}(i-1, w)$. Otherwise

$$
\mathrm{OPT}(i, w)=\max \left\{\mathrm{OPT}(i-1, w), w_{i}+\mathrm{OPT}\left(i-1, w-w_{i}\right)\right\} .
$$

Dynamic programming algorithm

Array M[0..n,0..W] optimal solutions OPT(i,w), $0 \leq i \leq n \quad 0 \leq w \leq W$.

Algorithm SubsetSum(n, W)
1 for $w:=0$ to W do
$2 \mathrm{M}[0, w]:=0$;
3 endfor;
4 for $i:=1$ to n do
5 for $w:=0$ to W do
6 if $w<w_{i}$
then $\operatorname{OPT}(i, w)=\operatorname{OPT}(i-1, w)$;
else $\operatorname{OPT}(i, w):=\max \left\{\mathrm{M}[i-1, w], w_{i}+\mathrm{M}\left[i-1, w-w_{i}\right]\right\} ;$
endif;
10 endfor;
11 endfor;
Pseudopolynomial running time: $\Theta(n W)$

Knapsack: Dynamic programming

Assume that $W \in \mathbb{N}$ and $w_{i} \in \mathbb{N}$ for $i=1, \ldots n$.

For $1 \leq i \leq n$ and each integer w with $0 \leq w \leq W$ $\mathrm{OPT}(i, w)=\max _{S} \Sigma_{j \in S} v_{j} \quad$ where $S \subseteq\{1, \ldots, i\}$ and $\Sigma_{j \in S} w_{j} \leq w$.

O = optimal solution

- $n \notin O: \operatorname{OPT}(n, W)=\operatorname{OPT}(n-1, W)$
- $n \in O: \operatorname{OPT}(n, W)=v_{n}+\operatorname{OPT}\left(n-1, W-w_{n}\right)$

If $w<w_{i}$, then $\operatorname{OPT}(i, w)=\operatorname{OPT}(i-1, w)$. Otherwise

$$
\mathrm{OPT}(i, w)=\max \left\{\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} .
$$

Pseudopolynomial running time: $\Theta(n W)$

