

14 – Network Flow

1. Maximum flow problem

$$\begin{split} & \mathcal{N} = (V, E, c) \text{ directed network} \\ & G = (V, E) \text{ directed graph}, \quad c: E \to \mathbb{R}^+ \quad \text{edge capacities} \\ & s, t \in V \qquad \text{source } s, \text{ sink } t \\ & \text{Feasible } (s, t) \text{-flow:} \quad f: E \to \mathbb{R}_0^+ \end{split}$$

a) $0 \le f(e) \le c(e)$ $\forall e \in E$ Capacity constraints

b) $\sum_{e \in in(v)} f(e) = \sum_{e \in out(v)} f(e) \quad \forall v \in V \setminus \{s, t\}$ Flow conservation

$$in(v) = \{ edges into v \}$$
 $out(v) = \{ edges out of v \}$

Example

W.I.o.g. graph *G* has no pair of forward / backward edges.

Let *f* be a feasible flow. Then its value is:

$$V(f) = \sum_{e \in out(s)} f(e) - \sum_{e \in in(s)} f(e)$$

The max-flow problem:

Compute a feasible flow of maximum value.

Definition: An (*s*,*t*)-cut is a partition *S*,*T* of *V*, i.e. $V = S \cup T$, $S \cap T = \emptyset$, such that $s \in S$, $t \in T$.

Capacity of a cut:

$$C(S,T) = \sum_{e \in E \cap (S \times T)} c(e)$$

Lemma 1: Let *f* be a feasible flow and (*S*,*T*) be an (*s*,*t*)-cut. There holds $V(f) \le C(S,T)$.

Proof: $V(f) = \sum f(e) - \sum f(e)$ $e \in out(s)$ $e \in in(s)$ $=\sum_{v\in S}\left(\sum_{e\in out(v)}f(e)-\sum_{e\in in(v)}f(e)\right)$ = $\sum f(e) - \sum f(e)$ $e \in E \cap (S \times T) \qquad e \in E \cap (T \times S)$ $\leq \sum c(e)$ $e \in E \cap (S \times T)$ =C(S,T)

ТШ

Theorem 1: Let f be a flow of maximum value and (S,T) be an (s,t)cut of minimum capacity. There holds

V(f) = C(S,T).

Augmenting paths: Find paths along which the flow can be increased.

Residual network RN for a given feasible flow f:

$$E_1 = \{ (v, w) : (v, w) = e \in E \text{ and } f(e) < c(e) \}$$
$$E_2 = \{ (w, v) : (v, w) = e \in E \text{ and } f(e) > 0 \}$$

For $e = (v, w) \in E$ use e_1 for $(v, w) \in E_1$ (if it exists) e_2 for $(w, v) \in E_2$ (if it exists)

$$\overline{c}: E_1 \cup E_2 \to R^+ \qquad \overline{c}(e_1) = c(e) - f(e) \qquad \text{for } e_1 \in E_1$$

$$\overline{c}(e_2) = f(e) \qquad \text{for } e_2 \in E_2$$

 $RN = (V, E_1 \cup E_2, \overline{C})$

$$V_0 = \{s\}$$

$$V_{i+1} = \{w \in V - (V_0 \cup \ldots \cup V_i); \quad \exists v \in V_i : (v, w) \in E_1 \cup E_2\} \text{ for } i \ge 1$$

$$\overline{V} = \bigcup_{i \ge 0} V_i$$

$$LN = \left(\overline{V}, \left(E_1 \cup E_2\right) \cap \bigcup_{i \ge 0} \left(V_i \times V_{i+1}\right), \overline{c}\right)$$

© S. Albers 17

Example

Lemma 2: Sei *f* be a feasible flow in *N* and let $LN = (\overline{V}, \overline{E}, \overline{c})$ be the level network for *f*.

- a) *f* is a maximum flow if and only if $t \notin \overline{V}$.
- b) Let \overline{f} be a feasible flow in *LN*. Then $f': E \rightarrow \mathbb{R}$ with

$$f'(e) = f(e) + \bar{f}(e_1) - \bar{f}(e_2)$$

is a feasible flow in N with $V(f') = V(f) + V(\overline{f})$.

Define $\overline{f}(e_i) = 0$ for $e_i \notin \overline{E}$.

Example

Proof: b) Capacity constraints. For any $e \in E$, there holds:

$$\begin{aligned} & (e) = \overline{f}(e_{2}) \\ & \leq f(e) + \overline{f}(e_{1}) - \overline{f}(e_{2}) \\ & = f'(e) \\ & = f(e) + \overline{f}(e_{1}) - \overline{f}(e_{2}) \\ & \leq f(e) + \overline{f}(e_{1}) \\ & \leq c(e) \end{aligned}$$

The first inequality holds because $\overline{f}(e_2) \le \overline{c}(e_2) = f(e)$. The last inequality follows because $\overline{f}(e_1) \le \overline{c}(e_1) = c(e) - f(e)$.

WS 2018/19

© S. Albers 21

Proof, part b)

For every $v \in V$ there holds:

$$\sum_{e \in out(v)} f'(e) - \sum_{e \in in(v)} f'(e)$$

= $\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) + \left(\sum_{e \in out(v)} \overline{f}(e_1) + \sum_{e \in in(v)} \overline{f}(e_2)\right)$
- $\left(\sum_{e \in in(v)} \overline{f}(e_1) + \sum_{e \in out(v)} \overline{f}(e_2)\right)$

Flow conservation: For every $v \in V\{s\}$, the last expression is equal to 0. Value: For *v*=*s*, we obtain $V(f') = V(f) + V(\overline{f})$.

WS 2018/19

© S. Albers 22

Proof, part a)

a) " \Rightarrow " Let $t \in \overline{V}$.

Then there exists a path *P* from *s* to *t* in *LN*.

Adding \overline{f} to f, as specified in part b) of the lemma, yields a flow of higher value. Hence f is not a maximum flow.

Proof, part b)

"⇐"

Let $S = \overline{V}$, T = V - S

There holds $s \in S$, $t \in T$. Hence (S,T) is an (s,t)-cut. $(E_1 \cup E_2) \cap (S \times T) = \emptyset$

$$f(e) = c(e) \quad \text{for } e \in S \times T$$
$$f(e) = 0 \quad \text{for } e \in T \times S$$

$$V(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) = C(S,T)$$

The first equation above was shown in the proof of Lemma 1. Since $V(g) \le C(S,T)$, for every feasible flow g, flow f is a maximum flow. **Theorem 1:** Let N = (V, E, c) be a network and $s, t \in V$. V_{max} = maximum value of a feasible (s,t)-flow C_{min} = minimum capacity of an (s,t)-cut

 $V_{max} = C_{min}$

Proof: By Lemma 1 there holds $V_{max} \leq C_{min}$. Let *f* be a flow with $V(f) = V_{max}$ and let $LN = (\overline{V}, \overline{E}, \overline{c})$ be the layer network for *f*.

Set $S = \overline{V}$ and T = V - S. In the proof of Lemma 2 we showed

$$V(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) = C(S,T).$$

Using the fact that $V_{max} \leq C_{min}$, it follows that (S, T) is an (s, t)-cut of minimum capacity.

WS 2018/19

Definition: A feasible flow \overline{f} in a level network *LN* is a blocking flow if on every path

$$S = V_0 \xrightarrow{e_1} V_1 \xrightarrow{e_2} V_2 \xrightarrow{e_3} \dots \xrightarrow{e_k} V_k = t$$

from s to t at least one edge is saturated, i.e. $\overline{f(e_i)} = \overline{c(e_i)}$ for at least one *i*.

Algorithm

- 1. f(e) := 0 for all $e \in E$;
- 2. Construct the level network $LN = (\overline{V}, \overline{E}, \overline{c})$ for *f*;
- 3. while $t \in \overline{V}$ do
- 4. Find a blocking flow *f* in *LN*;
- 5. Update f using \overline{f} as specified in Lemma 2b);
- 6. Construct the level network *LN* for *f*;
- 7. endwhile;

How do we find a blocking flow? How many iterations?

Definition: The depth of a level network is the value k with $t \in V_k$.

Lemma 3: Let k_i be the depth of the level network in the *i*-th iteration. There holds $k_i > k_{i-1}$, for $i \ge 2$.

Proof: Level network in the *i*-th iteration: LN_i There exists a path *P* from *s* to *t* of length k_i .

$$s = v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \xrightarrow{e_3} \dots \xrightarrow{e_{k_{i-1}}} v_{k_{i-1}} \xrightarrow{e_{k_i}} v_{k_i} = t$$

$$d_j = \text{level number of } v_j \text{ in } LN_{i-1}, 0 \le j \le k_j$$

$$d_j = \infty \text{ if } v_j \text{ is no node in } LN_{i-1}$$

ПП

Claim:

For every $i \ge 2$ there holds:

- a) If there exists an edge from v_{j-1} to v_j in LN_{j-1} , then $d_j = d_{j-1} + 1$.
- b) If there exists no edge from v_{j-1} to v_j in LN_{j-1} , then $d_j \leq d_{j-1}$.
- c) $k_{i-1} < k_i$

Proof:

a) Obvious.

- b) Assumption: $d_j \ge d_{j-1} + 1$ f_{j-1} yields LN_{j-1} f_j yields LN_j
- Case 1. $(v_{j-1}, v_j) \in E$: Since $d_j \ge d_{j-1} + 1$, node v_j is not contained in levels numbered 0 to d_{j-1} in LN_{j-1} . If there is no edge from v_{j-1} to v_j in LN_{j-1} , then (v_{j-1}, v_j) is not in the residual network for f_{j-1} . Thus $f_{j-1}(v_{j-1}, v_j) = c(v_{j-1}, v_j)$ and (v_j, v_{j-1}) is in the residual network for f_{j-1} . Since (v_{j-1}, v_j) is an edge in SN_j , there holds $f_j(v_{j-1}, v_j) < c(v_{j-1}, v_j) = f_{j-1}(v_{j-1}, v_j)$ and flow along (v_{j-1}, v_j) was reduced. It follows that $(v_j, v_{j-1}) \in E_{j-1}$.
- Case 2. $(v_j, v_{j-1}) \in E$: There holds $f_{i-1}(v_j, v_{j-1}) = 0$ since otherwise (v_{j-1}, v_j) would be in the residual network for f_{i-1} and would be included in LN_{i-1} , given that $d_j \ge d_{j-1} + 1$. Moreover, $f_i(v_j, v_{j-1}) > 0$ because (v_{j-1}, v_j) is in LN_i . Hence flow was increased along (v_j, v_{j-1}) and $(v_j, v_{j-1}) \in E_{i-1}$.

In any case $(v_j, v_{j-1}) \in \overline{E}_{i-1}$. Therefore $d_{j-1} = d_j + 1$ and $d_j = d_{j-1} - 1 < d_{j-1}$.

Part c)

c) Since $v_0 = s$ and $d_0 = 0$, parts a) and b) imply $d_j \le j$, for $1 \le j \le k_i$.

In particular $k_{i-1} = d_{k_i} \le k_i$.

- We next argue that there exists in edge (v_{j-1}, v_j) on the path *P* in *LN_i* that does not exist in LN_{i-1} . Suppose on the contrary that all edges of *P* exist in LN_{i-1} . The computed blocking flow $\overline{f_{i-1}}$ saturates at least one edge (v_{j-1}, v_j) of *P* in LN_{i-1} .
- If $(v_{j-1}, v_j) \in E$, then $\overline{f}_{i-1}(v_{j-1}, v_j) = \overline{c}_{i-1}(v_{j-1}, v_j) = c(v_{j-1}, v_j) f_{i-1}(v_{j-1}, v_j)$. Note that the reverse edge (v_j, v_{j-1}) is not contained in LN_{i-1} . It follows that $f_i(v_{j-1}, v_j) = f_{i-1}(v_{j-1}, v_j) + \overline{f}_{i-1}(v_{j-1}, v_j) = c(v_{j-1}, v_j)$ and (v_{j-1}, v_j) is not contained in LN_i .
- If $(v_j, v_{j-1}) \in E$, then $\overline{f}_{i-1}(v_{j-1}, v_j) = \overline{c}_{i-1}(v_{j-1}, v_j) = f_{i-1}(v_j, v_{j-1})$. Again (v_j, v_{j-1}) is not contained in LN_{i-1} . It follows that $f_i(v_j, v_{j-1}) = f_{i-1}(v_j, v_{j-1}) \overline{f}_{i-1}(v_{j-1}, v_j) = 0$ and (v_{j-1}, v_j) is not contained in LN_i . In both cases we obtain a contradiction.

Consider path P in LN_i.

$$s = v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \xrightarrow{e_3} \dots \xrightarrow{e_{k_{i-1}}} v_{k_{i-1}} \xrightarrow{e_{k_i}} v_{k_i} = t$$

Let (v_{j-1}, v_j) be the edge not contained in LN_{j-1} . Part a) and b) imply $d_{j-1} \le j-1$. Part b) ensures $d_j \le j-1$. Again, by parts a) and b), along each of the remaining $k_j - j$ edges of *P* the level number can increase by at most 1.

We conclude $k_{j-1} = d_{k_j} \le j - 1 + k_j - j < k_j$.

Corollary: The number of iterations is $\leq n$.

7. Blocking flows: DFS algorithm

Starting at *s*, at any node always choose the first outgoing edge until a) *t* is reached or b) a dead end *v* (no outgoing edges) is reached.

a) Determine the minimum capacity ϵ along the path. Increase the flow

by ϵ , reduce the capacity by ϵ and delete saturated edges.

b) Go back one node, delete v and its incoming edges.

Let n=|V| and m=|E|.

Theorem 2: A blocking flow can be computed in time O(nm).

Proof: *k* = depth of the level network

Construction of a path requires time O(k + # traversed edges ending in a dead end).

At most *m* paths are constructed. Every edge, over all path constructions, ends only once in a dead end. Total time: O(km + m) = O(nm) Work with the level network. Maintain a working copy that is used to construct a blocking flow. A second copy keeps track of the flow constructed so far.

Potential of a node v

$$P(v) = \min\left\{\sum_{e \in out(v)} \overline{c}(e), \sum_{e \in in(v)} \overline{c}(e)\right\}$$

 $P^* = \min \{P(v): v \in V\}$

Improved algorithm

Choose v with $P(v) = P^*$. Push P^* flow units from v to higher levels.

Level V_h : $S_h \subseteq V_h$, set containing P^* extra flow units

$$P^* = \sum_{x \in S_h} S[x]$$
 $S[x] =$ supply at node x

Pull *P** flow units into *v* from lower levels.

Flow increases by P^* units.

Simplify the network by deleting saturated edges and nodes with indegree or outdegree equal to 0 (at least one node is deleted).

Pushing flow

Algorithm *push*(*x*,*S*,*h*);

\\ x is node in level V_h and has a supply of S extra flow units to be pushed to nodes in level V_{h+1} .

- 1. **while** S >0 **do**
- 2. Let e = (x, y) be the first outgoing edge at x;
- 3. $\delta := \min\{S, \bar{c}(e)\};$
- 4. Increase the flow along *e* by δ , reduce $\bar{c}(e)$ by δ , add *y* to S_{h+1} (in case *y* is not yet element), increase S[y] by δ ;
- 5. $S := S \delta;$
- 6. **if** $\bar{c}(e) = 0$ **then** delete *e* from the network **endif**;
- 7. endwhile;
- 8. Delete x from S_h and set S[x]:=0;
- 9. if $out(x) = \emptyset$ and $x \neq t$ then
- 10. Add *x* to the set *del*;
- 11. endif;

Algorithm computing a blocking flow

- 1. for all $x \in V$ do S[x] := 0; endfor;
- 2. for all $l, 0 \le l \le k$, do $S_l := \emptyset$; endfor;
- 3. *del* ← ∅;
- 4. while *LN* is not empty do
- 5. Compute P[v] for all $v \in V$ and $P^* = \min \{P[v]; v \in V\}$; Let $v \in V_i$ be a node with $P^* = P[v]$;
- 6. $S[v]:=P^*; S_{i}:=\{v\};$
- 7. **for** h := l to k 1 do
- 8. for all $x \in S_h$ do push(x, S[x], h); endfor;
- 9. endfor;
- 10. $S[v]:=P^*; S_1:=\{v\}$
- 11. **for** *h*:= *l* **downto** 1 **do**
- 12. for all $x \in S_h$ do pull(x, S[x], h) endfor;
- 13. endfor;
- 14. simplify(del);
- 15. endwhile;

WS 2018/19

ПП

Theorem 3: A blocking flow in a level network can be compute in time $O(n^2)$.

Proof: 1-3: *O*(*n*)

- Loop 4-15: Executed *O*(*n*) times. Each execution takes *O*(*n*) if we ignore *push*, *pull*, *simplify*.
- All executions of *push / pull* take time $O(n^2 + e)$: If a push/pull operation at *x* (line 4) does not saturate an outgoing/incoming edge *e*, i.e. $\bar{c}(e)$ remains positive, then the operation terminates the current call of *push / pull*.
- All executions of simplify take time O(n + m).

Theorem 4: A maximum flow can be computed in $O(n^3)$ time.

Proof: There are at most *n* iterations. In each one, a level network and a blocking flow can be computed in time $O(n^2)$.

Definition: Let $d \in \mathbb{N}$. N = (V, E, c) is *d*-bounded if $c(e) \in \{1, 2, ..., d\}$ for all $e \in E$.

1-bounded networks are called (0,1)-networks.

Application of our flow algorithms to *d*-bounded networks:

- \rightarrow all computed flows are integral, i.e. $f(e) \in \mathbb{N}_0$
- \rightarrow the maximum flow is integral

Theorem 5: A blocking flow in a *d*-bounded network can be computed in time O(de). For d = 1 we obtain O(e) time.

Proof: DFS algorithm

Time for the construction of a path:

O(# edges on *s*-*t*-path + # traversed edges ending in a dead end)

Each edge is contained in at most *d* paths.

Lemma 4: Let *N* be a network and V_{max} be the value of a maximum (s,t)-flow. Let *RN* be the residual network for a flow *f* and $\overline{V_{max}}$ be the value of a maximum (s,t)-flow in *RN*. There holds

$$V_{\max} = V_{\max} + V(f).$$

Proof: Let (S,T) be an (s,t)-cut. C(S,T): capacity of (S,T) in N $\overline{C}(S,T)$: capacity of (S,T) in RN

$$\overline{C}(S,T) = \sum_{v \in S, w \in T} \overline{c}(v,w) = \sum_{v \in S, w \in T} (c(v,w) - f(v,w) + f(w,v))$$
$$= C(S,T) - \left(\sum_{v \in S, w \in T} f(v,w) - \sum_{v \in S, w \in T} f(w,v)\right)$$
$$= C(S,T) - V(f)$$

We obtain

$$\overline{C}_{\min} = C_{\min} - V(f),$$

where C_{\min} and \overline{C}_{\min} denote the minimum capacities of (s,t)-cuts in N and RN, respectively.

Using the max-flow min-cut theorem we conclude

$$V_{\max} = V_{\max} - V(f).$$

Definition: A network N = (V, E, c) is simple, if indeg(v) = 1or outdeg(v) = 1, for all $v \in V \{s, t\}$.

Theorem 6: Let N = (V, E, c) be a simple (0,1)-network. Then a maximum flow can be computed in time $O(n^{1/2}m)$.

Claim: Let *N* be a simple (0,1)-network and *f* be an integral flow in *N*. Then *RN* is a simple (0,1)-network.

Proof: Sei $v \in V({s,t})$ and indeg(v) = 1 (outdeg(v) = 1 is analogous). If f(e) = 0 for $e \in in(v)$, then f(e') = 0, for all $e' \in out(v)$, and v has indegree 1 in RN.

If f(e) = 1 for $e \in in(v)$, then f(e') = 1 for exactly one $e' \in out(v)$ and v has indegree 1 in RN.

Obviously, the edge capacities in *RN* are either 0 or 1.

WS 2018/19

Consider our maximum flow algorithm. All intermediate flows are integral.

A blocking flow can be computed in time O(m).

```
We prove: # iterations = O(n^{1/2}).
```

```
V_{\text{max}} = value of a maximum (s,t)-flow
```

```
V_{\max} \le n^{1/2}: ok
```

We study the case that $V_{\text{max}} > n^{1/2}$. Let iteration / be the one increasing the flow value to $> V_{\text{max}} - n^{1/2}$. We show that the level network in iteration / has depth $< n^{1/2}+1$.

This implies that before iteration *I*, at most $n^{1/2}$ +1 iterations were executed. After iteration *I*, at most $n^{1/2}$ iterations can be performed because the flow value increases by at least 1 in each iteration.

f : feasible (*s*,*t*)-flow immediately before iteration *I RN:* residual network for *f*

By Lemma 4 there exists a flow \overline{f} in RN with value

$$\overline{V}_{\max} = V_{\max} - V(f) \ge V_{\max} - (V_{\max} - n^{1/2}) = n^{1/2}$$

Since *RN* is a simple (0,1)-network, we may assume that \overline{f} is integral, i.e. $\overline{f(e)} \in \{0,1\}$.

As *RN* is simple, at most one flow unit is routed through each $v \in V \{s, t\}$.

f consists of at least $n^{1/2}$ vertex-disjoint paths from *s* to *t*. Hence there exists a path with $< n^{1/2}$ intermediate nodes.

WS 2018/19

G = (V, E) undirected graph

Matching *M* is an edge set $M \subseteq E$ such that no two edges $e_1, e_2 \in M$, $e_1 \neq e_2$, have a common node.

A maximum matching is a matching of maximum cardinality.

An undirected graph G = (V, E) is bipartite if $V = V_1 \cup V_2$, for $V_1, V_2 \subseteq V$ with $V_1 \cap V_2 = \emptyset$, and $E \subseteq V_1 \times V_2$.

ТΠ

Theorem 7: Let $G = (V_1 \cup V_2, E)$, $E \subseteq V_1 \times V_2$, be a bipartite graph. Then a maximum matching can be computed in time $O(n^{1/2}m)$.

Proof: Construct a simple network as follows: (All capacities are equal to 1.)

