Matching
» Input: undirected graph G = (V,E).
> M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

Bipartite Matching

» Input: undirected, bipartite graph G = (L w R, E).

> M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality
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Bipartite Matching

> Input: undirected, bipartite graph G = (L w R, E).

> M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

Maxflow Formulation

> Input: undirected, bipartite graph G = (Lw R w {s,t},E’).
» Direct all edges from L to R.

» Add source s and connect it to all nodes on the left.

» Add t and connect all nodes on the right to t.

> All edges have unit capacity.
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Proof

Max cardinality matching in G < value of maxflow in G’
> Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

> fis a flow and has cardinality k.
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Proof
Max cardinality matching in G > value of maxflow in G’
> Let f be a maxflow in G" of value k
Integrality theorem = k integral; we can assume f is 0/1.
Consider M= set of edges from L to R with f(e) = 1.
Each node in L and R participates in at most one edge in M.
M| = k, as the flow must use at least k middle edges.

vV v vy
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12.1 Matching

Which flow algorithm to use?
> Generic augmenting path: @(mval(f*)) = O(mn).
> Capacity scaling: ©(m?2logC) = O(m?).

> Shortest augmenting path: O(mn?).

For unit capacity simple graphs shortest augmenting path can be
implemented in time O (m./n).

> every edge has capacity 1

> a node has either at most one leaving edge or at most
one entering edge
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Baseball Elimination

team wins losses remaining games
i w; L; Atl Phi NY Mon
Atlanta 83 71 - 1 6 1
Philadelphia 80 79 1 0 2
New York 78 78 6 0 - 0
Montreal 77 82 1 2 0 =

Which team can end the season with most wins?

> Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

> But also Philadelphia is eliminated. Why?
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Baseball Elimination

Formal definition of the problem:

> Given a set S of teams, and one specific team z € S.
» Team x has already won w, games.

> Team x still has to play team y, ¥y, times.

>

Does team z still have a chance to finish with the most
number of wins.
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Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still
obtain.

Idea. Distribute the results of remaining games in such a way
that no team gets too many wins.
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Certificate of Elimination

Let T = S be a subset of teams. Define

w(T):=> wi, r(T):i= > 7
f ieT * i,jeT,i<j
wins of remaining games
teamsin T among teams in T’

If % > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is
therefore eliminated.
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Theorem 1
A team z is eliminated if and only if the flow network for z does
not allow a flow of value >.;jcs\(2),i<j7ij-

Proof (<)
» Consider the mincut A in the flow network. Let T be the set
of team-nodes in A.

» If for node x-y not both team-nodes x and y are in T, then
x-y ¢ A as otw. the cut would cut an infinite capacity edge.

> We don’t find a flow that saturates all source edges:

r(§S\{z}) >cap(A,V \ A)
= zz rij + zZ(Af—-uH)

i<j:i¢Tvj¢T ieT
>r(S\{z})—v(T)+|TIM —w(T)

» This gives M < (w(T) +v(T))/|T], i.e., z is eliminated.




Baseball Elimination

Proof (=)

» Suppose we have a flow that saturates all source edges.
> We can assume that this flow is integral.

> For every pairing x-y it defines how many games team x
and team y should win.

» The flow leaving the team-node x can be interpreted as the
additional number of wins that team x will obtain.

» This is less than M — w, because of capacity constraints.

» Hence, we found a set of results for the remaining games,
such that no team obtains more than M wins in total.

> Hence, team z is not eliminated.
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Project Selection

Project selection problem:
> Set P of possible projects. Project v has an associated profit
pv (can be positive or negative).

» Some projects have requirements (taking course EA2
requires course EAT1).

» Dependencies are modelled in a graph. Edge (u,v) means
“can’t do project u without also doing project v.”

> A subset A of projects is feasible if the prerequisites of
every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.
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Project Selection

The prerequisite graph:
> {x,a,z} is a feasible subset.

> {x,a} is infeasible.
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Project Selection
Mincut formulation:
> Edges in the prerequisite graph get infinite capacity.
» Add edge (s, v) with capacity p, for nodes v with positive
profit.
» Create edge (v, t) with capacity —p, for nodes v with
negative profit.

prerequisite graph
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Theorem 2
Ais a mincut if A\ {s} is the optimal set of projects.

Proof.
> A is feasible because of capacity infinity edges.
> cap(A,V\A) = > pu+ > (—pu)
VEA:py >0 VEApy <0
Z Pv — Z Pv
vipy>0 vEA

| For the formula we
i define ps := 0.
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