
A Fast Matching Algorithm

Algorithm 52 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.
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Lemma 1

Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in

this graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.
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ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 2

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.
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Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.
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Lemma 3

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows

from the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.
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If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains

|M∗| − |M| vertex-disjoint augmenting paths. Each of these

paths contains at least ` + 1 vertices. Hence, there can be at

most |V |
`+1 of them.
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Lemma 4

The Hopcroft-Karp algorithm requires at most 2
√
|V | phases.

Proof.

ñ After iteration b
√
|V |c the length of a shortest augmenting

path must be at least b
√
|V |c + 1 ≥

√
|V |.

ñ Hence, there can be at most |V |/(
√
|V | + 1) ≤

√
|V |

additional augmentations.
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Lemma 5

One phase of the Hopcroft-Karp algorithm can be implemented

in time O(m).
construct a “level graph” G′:
ñ construct Level 0 that includes all free vertices on left side L
ñ construct Level 1 containing all neighbors of Level 0

ñ construct Level 2 containing matching neighbors of Level 1

ñ construct Level 3 containing all neighbors of Level 2

ñ . . .

ñ stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS
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ñ a shortest augmenting path must go from Level 0 to the last

layer constructed

ñ it can only use edges between layers

ñ construct a maximal set of vertex disjoint augmenting path

connecting the layers

ñ for this, go forward until you either reach a free vertex or

you reach a “dead end” v
ñ if you reach a free vertex delete the augmenting path and

all incident edges from the graph

ñ if you reach a dead end backtrack and delete v together

with its incident edges
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See lecture versions of the slides.

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)
ñ a search (successful or unsuccessful) takes time O(n)
ñ a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn2).
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Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
ñ an edge/vertex is traversed at most twice

need at most O(
√
n) phases

ñ after
√
n phases there is a cut of size at most

√
n in the

residual graph

ñ hence at most
√
n additional augmentations required

Time: O(m√n).
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