7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>
> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the {-th element; return “error” if
the data-structure contains less than £ elements.

m Ernst Mayr, Harald Racke 184/190



7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>
> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the £-th element; return “error” if
the data-structure contains less than £ elements.

Augment an existing data-structure instead of developing a
new one.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 184/190



7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/190



7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/190



7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/190



7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

4. develop the new operations

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).
1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node
without asymptotically affecting the running time of insert,
delete, and search. We come back to this step later...

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

4. How does find-by-rank work?
Find-by-rank(k) := Select(root,k) with

Algorithm 11 Select(x, 1)
1: if x = null then return error

2: if left[x] # null then » — left[x].size +1 else r — 1
3: if i = ¥ then return x

4: if i <7 then
5
6
7

return Select(left[x], 1)
. else
return Select(right[x],i — 7)

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 187/190



Select(x, 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@®), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@®), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@®), 3)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



Select(x, 1)

Select(@), 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?
Search(k): Nothing to do.
Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during
rotations.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/190



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size
field for each visited node. Maintain the size field during
rotations.

Delete(x): Directly after splicing out a node traverse the path
from the spliced out node upwards, and decrease the size
counter on every node on this path. Maintain the size field
during rotations.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/190



Rotations

The only operation during the fix-up procedure that alters the
tree and requires an update of the size-field:

(x)|Al+IBl+{Cl+2 IAl+{BI+ICl+2 (Z)
LeftRotate(x)
RightRotate(z)

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields
of the children.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 190/190



	Augmenting Data Structures

