| Operation | Binary
Heap | BST | Binomial
Heap | Fibonacci
Heap* | |--------------|----------------|------------|------------------|--------------------| | build | n | $n \log n$ | $n \log n$ | n | | minimum | 1 | $\log n$ | $\log n$ | 1 | | is-empty | 1 | 1 | 1 | 1 | | insert | $\log n$ | $\log n$ | $\log n$ | 1 | | delete | $\log n^{**}$ | $\log n$ | $\log n$ | $\log n$ | | delete-min | $\log n$ | $\log n$ | $\log n$ | $\log n$ | | decrease-key | $\log n$ | $\log n$ | $\log n$ | 1 | | merge | n | $n \log n$ | $\log n$ | 1 | - $ightharpoonup B_k$ has 2^k nodes. - $ightharpoonup B_k$ has height k. - ▶ The root of B_k has degree k. - $ightharpoonup B_k$ has $\binom{k}{\ell}$ nodes on level ℓ . - ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$. - \triangleright B_k has 2^k nodes. - $ightharpoonup B_k$ has height k. - ▶ The root of B_k has degree k. - $ightharpoonup B_k$ has $\binom{k}{\ell}$ nodes on level ℓ . - ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$. - \triangleright B_k has 2^k nodes. - $ightharpoonup B_k$ has height k. - ▶ The root of B_k has degree k. - $ightharpoonup B_k$ has $\binom{k}{\ell}$ nodes on level ℓ . - ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$. - \triangleright B_k has 2^k nodes. - $ightharpoonup B_k$ has height k. - ▶ The root of B_k has degree k. - ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ . - ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$. - $ightharpoonup B_k$ has 2^k nodes. - $ightharpoonup B_k$ has height k. - ▶ The root of B_k has degree k. - ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ . - ▶ Deleting the root of B_k gives trees B_0, B_1, \dots, B_{k-1} . Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 . Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 . The number of nodes on level ℓ in tree B_k is therefore $$\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}$$ The binomial tree B_k is a sub-graph of the hypercube H_k . The parent of a node with label $b_k, ..., b_1$ is obtained by setting the least significant 1-bit to 0. The ℓ -th level contains nodes that have ℓ 1's in their label ### The binomial tree B_k is a sub-graph of the hypercube H_k . The parent of a node with label $b_k, ..., b_1$ is obtained by setting the least significant 1-bit to 0. The ℓ -th level contains nodes that have ℓ 1's in their label. The binomial tree B_k is a sub-graph of the hypercube H_k . The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0. The ℓ -th level contains nodes that have ℓ 1's in their label. The binomial tree B_k is a sub-graph of the hypercube H_k . The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0. The ℓ -th level contains nodes that have ℓ 1's in their label. - The children of a node are arranged in a circular linked list. - A child-pointer points to an arbitrary node within the list. - A parent-pointer points to the parent node. - Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x). - The children of a node are arranged in a circular linked list. - A child-pointer points to an arbitrary node within the list. - A parent-pointer points to the parent node. - Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x). - The children of a node are arranged in a circular linked list. - A child-pointer points to an arbitrary node within the list. - A parent-pointer points to the parent node. - Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x). - The children of a node are arranged in a circular linked list. - A child-pointer points to an arbitrary node within the list. - A parent-pointer points to the parent node. - Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x). - Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time. - We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T. In a binomial heap the keys are arranged in a collection of binomial trees. Every tree fulfills the heap-property In a binomial heap the keys are arranged in a collection of binomial trees. Every tree fulfills the heap-property In a binomial heap the keys are arranged in a collection of binomial trees. #### Every tree fulfills the heap-property In a binomial heap the keys are arranged in a collection of binomial trees. Every tree fulfills the heap-property Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection. Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once. Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n. Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection. Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once. Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n. Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection. Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once. Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n. Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection. Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once. Then $n=\sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ightharpoonup Hence, at most $\lfloor \log n \rfloor + 1$ trees - ▶ The minimum must be contained in one of the roots. - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$ - ightharpoonup Hence, at most $|\log n| + 1$ trees. - ▶ The minimum must be contained in one of the roots. - ightharpoonup The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ightharpoonup Hence, at most $\lfloor \log n \rfloor + 1$ trees. - ▶ The minimum must be contained in one of the roots - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ► Hence, at most $\lfloor \log n \rfloor + 1$ trees. - ► The minimum must be contained in one of the roots - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ► Hence, at most $\lfloor \log n \rfloor + 1$ trees. - The minimum must be contained in one of the roots. - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ► Hence, at most $\lfloor \log n \rfloor + 1$ trees. - The minimum must be contained in one of the roots. - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. - Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. - ▶ The heap contains tree B_i iff $b_i = 1$. - ► Hence, at most $\lfloor \log n \rfloor + 1$ trees. - The minimum must be contained in one of the roots. - ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$. - The trees are stored in a single-linked list; ordered by dimension/size. #### The merge-operation is instrumental for binomial heaps. A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists. Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order. Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree. For more trees the technique is analogous to binary addition. The merge-operation is instrumental for binomial heaps. A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists. Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order. Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree. For more trees the technique is analogous # **Binomial Heap: Merge** The merge-operation is instrumental for binomial heaps. A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists. Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order. Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree. For more trees the technique is analogous # **Binomial Heap: Merge** The merge-operation is instrumental for binomial heaps. A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists. Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order. Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree. For more trees the technique is analogous to binary addition. # **Binomial Heap: Merge** The merge-operation is instrumental for binomial heaps. A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists. Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order. Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree. For more trees the technique is analogous to binary addition. #### S_1 . merge(S_2): - Analogous to binary addition. - Time is proportional to the number of trees in both heaps - ightharpoonup Time: $O(\log n)$. #### S_1 . merge(S_2): - Analogous to binary addition. - Time is proportional to the number of trees in both heaps. - ightharpoonup Time: $O(\log n)$. #### S_1 . merge(S_2): - Analogous to binary addition. - Time is proportional to the number of trees in both heaps. - ▶ Time: $O(\log n)$. All other operations can be reduced to merge(). #### S. insert(x): - Create a new heap S' that contains just the element x. - ightharpoonup Execute S. merge(S'). - Time: $O(\log n)$. All other operations can be reduced to merge(). #### S. insert(x): - Create a new heap S' that contains just the element x. - **Execute** S. merge(S'). - ightharpoonup Time: $O(\log n)$. All other operations can be reduced to merge(). #### S. insert(x): - Create a new heap S' that contains just the element x. - **Execute** S. merge(S'). - ▶ Time: $O(\log n)$. #### S. minimum(): - Find the minimum key-value among all roots. - ▶ Time: $O(\log n)$. - Find the minimum key-value among all roots. - Remove the corresponding tree T_{\min} from the heap. - Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - ightharpoonup Compute S. merge(S'). - ightharpoonup Time: $O(\log n)$. - Find the minimum key-value among all roots. - ightharpoonup Remove the corresponding tree T_{\min} from the heap. - ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - ightharpoonup Compute S. merge(S'). - ightharpoonup Time: $\mathcal{O}(\log n)$. - Find the minimum key-value among all roots. - **Proof** Remove the corresponding tree T_{\min} from the heap. - ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - ightharpoonup Compute S. merge(S'). - ightharpoonup Time: $\mathcal{O}(\log n)$. - Find the minimum key-value among all roots. - **Proof** Remove the corresponding tree T_{\min} from the heap. - Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - ightharpoonup Compute S. merge(S'). - Time: $O(\log n)$ - Find the minimum key-value among all roots. - Remove the corresponding tree T_{\min} from the heap. - ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - **Compute** S. merge(S'). - ightharpoonup Time: $\mathcal{O}(\log n)$ - Find the minimum key-value among all roots. - Remove the corresponding tree T_{\min} from the heap. - Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees). - **Compute** S. merge(S'). - ▶ Time: $O(\log n)$. - ightharpoonup Decrease the key of the element pointed to by h. - Bubble the element up in the tree until the heap property is fulfilled. - ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$. - ▶ Decrease the key of the element pointed to by h. - Bubble the element up in the tree until the heap property is fulfilled. - ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$. - Decrease the key of the element pointed to by h. - Bubble the element up in the tree until the heap property is fulfilled. - ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$. - lacktriangle Decrease the key of the element pointed to by h. - Bubble the element up in the tree until the heap property is fulfilled. - ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$. - \triangleright **Execute** *S*. decrease-key($h, -\infty$). - **Execute** *S*. delete-min(). - ightharpoonup Time: $\mathcal{O}(\log n)$. - **Execute** *S*. decrease-key(h, $-\infty$). - **Execute** *S*. delete-min(). - ightharpoonup Time: $\mathcal{O}(\log n)$. - ► Execute *S*. decrease-key(h, $-\infty$). - Execute *S*. delete-min(). - ightharpoonup Time: $\mathcal{O}(\log n)$. - **Execute** *S*. decrease-key(h, $-\infty$). - Execute *S*. delete-min(). - ▶ Time: $O(\log n)$.