Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

— read-operations change the tree

m Ernst Mayr, Harald Racke 159/183

Splay Trees

find(x)
» search for x according to a search tree
> let X be last element on search-path

> splay(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 160/183

Splay Trees

insert(x)

> search for x; X is last visited element during search
(successer or predecessor of x)

> splay(x) moves x to the root

> insert x as new root

AA= LA

The illustration shows the case when x is
1
\ the predecessor of x.

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 161/183

Splay Trees

delete(x)
> search for x; splay(x); remove x
> search largest element X in A
> splay(x) (on subtree A)
>

connect root of B as right child of x

A0 = AA = £A

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/183

Move to Root Splay: Zig Case

How to bring element to root? better option splay(x):
> one (bad) option: moveToRoot(x) > zig case: if x is child of root do left rotation or right

> iteratively do rotation around parent of x until x is root rotation around parent

> if x is left child do right rotation otw. left rotation

m 7.3 Splay Trees ‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 163/183 Ernst Mayr, Harald Racke 164/183

Splay: Zigzag Case Double Rotations

better option splay(x):

> zigzag case: if x is right child and parent of x is left child
(or x left child parent of x right child)

» do double right rotation around grand-parent (resp. double
left rotation)

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 165/183

This case is different between

Sp|aY: Z|92|9 Caie | | moveToRoot(x) and splay(x).

better option splay(x):
> zigzig case: if x is left child and parent of x is left child (or
x right child, parent of x right child)
» do right roation around grand-parent followed by right
rotation around parent (resp. left rotations)

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 167/183

Splay vs. Move to Root

Input tree on which splay(x) and
: moveToRoot(x) is executed.

e e e e e e e e e e = =
I

ﬂﬂm Ernst Mayr, Harald Racke

7.3 Splay Trees

168/183

Splay vs. Move to Root

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/183

Splay vs. Move to Root

m Ernst Mayr, Harald Racke

7.3 Splay Trees

169/183

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears h times in this sequence.

The cost of a static search tree T is:

cost(T) = m + > hy depthy(x)
X

The total cost for processing the sequence on a splay-tree is
O(cost(Tmin)), where Tmin is an optimal static search tree.

: depthy(x) is the number of edges on a
1 path from the root of T to x.
1

! Theorem given without proof.

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:
> the cost for accessing element x is 1 + depth(x);

> after accessing x the tree may be re-arranged through
rotations;

Conjecture:
A splay tree that only contains elements from S has cost
O(cost(A,S)), for processing S.

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 170/183

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke

Lemma 1
Splay Trees have an amortized running time of O (logn) for all
operations.

171/183
Amortized Analysis
Definition 2
A data structure with operations op; (), ...,0p () has amortized
running times tq, ..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most

Diki-ti(n).

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/183

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke

173/183

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

¢i=ci+®D;) -®Di-1) .

» Show that ®(D;) = ®(Dyg).

Then
k k k
dci< D ci+®(Dy) —®(Do) = > ¢
i=1 i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.

Example: Stack

Stack
> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

v

The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
> S.push(): cost 1.
> S.pop(): cost 1.

> S.multipop(k): cost min{size, k} = k.

7.3 Splay Trees

m Ernst Mayr, Harald Racke

174/183

7.3 Splay Trees

‘_I—I_Hm Ernst Mayr, Harald Racke 175/183

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
> S.push(): cost

Cpush = Cpush + A® =1+1<2 .

| Note that the analysis
1 becomes wrong if pop() or

> S.pop(): cost | empty stack

> S. multipop(k): cost

émp = Cmp + AP = min{size, k} —min{size,k} <0 .

\ multipop() are called on an

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

> Increment: cost is k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).

7.3 Splay Trees

m Ernst Mayr, Harald Racke

176/183

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/183

Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Co1=Co1+ADP=1+1<2.

» Changing bit from 1 to O;

é1ﬁ0:C1a0+A<I):1—1S0.

> Increment: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCy_o + Co_1 < 2.

Splay Trees

potential function for splay trees:
> size s(x) = |Tx|
> rank r(x) = logy,(s(x))
> &(T) =2 perr(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1
plus the number of rotations.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/183

Splay: Zig Case

AP =7 (x)+7 (p) —7r(x)—7(p)
=7 (p) —r(x)

<r'(x) —r(x)

Costzig < 1 +3(r'(x) —r(x))

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/183

I Last inequality follows

Splay: Zigzig Case ! from next slide. 5

Ab =7 (x) +7(p) +7'(9) = 7(x) =7 (p) = 7(9)
=r'(p)+7r'(g) —r(x)—7r(p)
r'(x)+7r'(g) —7r(x) —r(x)

IA

r'(x)+7r'(g) +7r(x)—3r'(x) +3r (x) —r(x) - 2r(x)

2r'(x) +7'(g) +r(x) + 3(r' (x) —r(x))

IA

-2+3(r'(x) —7r(x)) = cOStzigzig < 3(r'(x) —7r(x))

: The last inequality holds
| because log is a concave
1 function.

Splay: Zigzig Case

%(T(X) +7'(g) — 27'(x))

%(logu(x)) +1log(s'(9)) — 2log(s' (x)))
1 s(x)y 1. s'(g)
210 <S’(x))+2log<s’(x))

1s(x) 15(9) 1
<log (ESS,();) Ej’(i)> slog(—) =-1

Splay: Zigzag Case

A® =7 (x)+7 (p) +7'(g) —r(x) —r(p)—7(9g)
=v'(p)+7'(g) —7r(x) - 7(p)
<7 (p) +7r'(g) —r(x) —r(x)
=1 (p) +7r'(g) —2r'(x) + 2r'(x) — 2r(x)

<-2+2(r'(x) —r(x)) = COStzigrag < 3(r'(x) —7r(x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke

182/183

Splay: Zigzag Case

%(T’(v) +7'(g) - 2r' (x))
= 5 (10g(s'(p)) +1og(s'(9)) — 2log(s" (x)))

1s'(p) 15'(9) 1
< log (Ei’(Z) + Ej’(i)> slog(i) =-1

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/183

Amortized cost of the whole splay operation:

<1+1+ > 3(re(x) —7r-1(x))
steps t

=2+ 3(r(root) — r9(x))
< O(logn)

1
1
: of a splay-operation we have only counted the number of :
: rotations, but the cost is 1+#rotations. \
1
1
1
1

1
1 The second one comes from the zig-operation. Note that we
| have at most one zig-operation during a splay.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke

183/183

Splay Trees

Bibliography

20002202200220227277

m 7.3 Splay Trees
Ernst Mayr, Harald Racke

184/183

	Splay Trees

