
Splay Trees

Disadvantage of balanced search trees:

− worst case; no advantage for easy inputs

− additional memory required

− complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

− only amortized guarantee

− read-operations change the tree

25. Jan. 2019

Ernst Mayr, Harald Räcke 159/183

Splay Trees

find(x)
ñ search for x according to a search tree

ñ let x̄ be last element on search-path

ñ splay(x̄)

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 160/183

Splay Trees

insert(x)
ñ search for x; x̄ is last visited element during search

(successer or predecessor of x)

ñ splay(x̄) moves x̄ to the root

ñ insert x as new root

x̄

A B

x̄

x

A
B

The illustration shows the case when x̄ is
the predecessor of x.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 161/183

Splay Trees

delete(x)
ñ search for x; splay(x); remove x
ñ search largest element x̄ in A
ñ splay(x̄) (on subtree A)

ñ connect root of B as right child of x̄

x

A B

x̄

A′ B

x̄

A′ B

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 162/183

Move to Root

x

p

A

B C

x

p

A B

C

How to bring element to root?

ñ one (bad) option: moveToRoot(x)

ñ iteratively do rotation around parent of x until x is root

ñ if x is left child do right rotation otw. left rotation

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 163/183

Splay: Zig Case

x

p

A

B C

x

p

A B

C

better option splay(x):

ñ zig case: if x is child of root do left rotation or right

rotation around parent

Note that moveToRoot(x) does the same.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 164/183

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

better option splay(x):

ñ zigzag case: if x is right child and parent of x is left child

(or x left child parent of x right child)

ñ do double right rotation around grand-parent (resp. double

left rotation)

Note that moveToRoot(x) does the same.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 165/183

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

better option splay(x):

ñ zigzig case: if x is left child and parent of x is left child (or

x right child, parent of x right child)

ñ do right roation around grand-parent followed by right

rotation around parent (resp. left rotations)

This case is different between
moveToRoot(x) and splay(x).

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 167/183

Splay vs. Move to Root
a

b

c

d

e

f

x

A B

C

D

E

F

G

H

Input tree on which splay(x) and
moveToRoot(x) is executed.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 168/183

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B C

D

E

F

G

H

Result after moveToRoot(x).

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 168/183

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B

C D

E F

G H

Result after splay(x).

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 169/183

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears hx times in this sequence.

The cost of a static search tree T is:

cost(T) =m+
∑
x
hx depthT (x)

The total cost for processing the sequence on a splay-tree is

O(cost(Tmin)), where Tmin is an optimal static search tree.

depthT (x) is the number of edges on a
path from the root of T to x.

Theorem given without proof.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 170/183

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

ñ the cost for accessing element x is 1+ depth(x);
ñ after accessing x the tree may be re-arranged through

rotations;

Conjecture:

A splay tree that only contains elements from S has cost

O(cost(A, S)), for processing S.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 171/183

Lemma 1

Splay Trees have an amortized running time of O(logn) for all

operations.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 172/183

Amortized Analysis

Definition 2

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with

an empty data-structure) that operate on at most n elements,

and let ki denote the number of occurences of opi() within this

sequence. Then the actual running time must be at most∑
i ki · ti(n).

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 173/183

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑
i=1

ci ≤
k∑
i=1

ci + Φ(Dk)− Φ(D0) =
k∑
i=1

ĉi

This means the amortized costs can be used to derive a bound

on the total cost.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 174/183

Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the

stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 175/183

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:
ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 176/183

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 177/183

Example: Binary Counter
Choose potential function Φ(x) = k, where k denotes the

number of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

Splay Trees

potential function for splay trees:

ñ size s(x) = |Tx|
ñ rank r(x) = log2(s(x))
ñ Φ(T) =∑v∈T r(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1

plus the number of rotations.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 179/183

Splay: Zig Case

x

p

A

B C

x

p

A B

C

∆Φ = r ′(x)+ r ′(p)− r(x)− r(p)
= r ′(p)− r(x)
≤ r ′(x)− r(x)

costzig ≤ 1+ 3(r ′(x)− r(x))

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 180/183

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(x)+ r ′(g)− r(x)− r(x)
= r ′(x)+ r ′(g)+ r(x)− 3r ′(x)+ 3r ′(x)− r(x)− 2r(x)

= −2r ′(x)+ r ′(g)+ r(x)+ 3(r ′(x)− r(x))
≤ −2+ 3(r ′(x)− r(x)) ⇒ costzigzig ≤ 3(r ′(x)− r(x))

Last inequality follows
from next slide.

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

1
2

(
r(x)+ r ′(g)− 2r ′(x)

)
= 1

2

(
log(s(x))+ log(s′(g))− 2 log(s′(x))

)
= 1

2
log

(s(x)
s′(x)

)
+ 1

2
log

(s′(g)
s′(x)

)
≤ log

(1
2
s(x)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

The last inequality holds
because log is a concave
function.

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(p)+ r ′(g)− r(x)− r(x)
= r ′(p)+ r ′(g)− 2r ′(x)+ 2r ′(x)− 2r(x)

≤ −2+ 2(r ′(x)− r(x)) ⇒ costzigzag ≤ 3(r ′(x)− r(x))

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 182/183

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

1
2

(
r ′(p)+ r ′(g)− 2r ′(x)

)
= 1

2

(
log(s′(p))+ log(s′(g))− 2 log(s′(x))

)
≤ log

(1
2
s′(p)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 182/183

Amortized cost of the whole splay operation:

≤ 1+ 1+
∑

steps t
3(rt(x)− rt−1(x))

= 2+ 3(r(root)− r0(x))

≤ O(logn)

The first one is added due to the fact that so far for each step
of a splay-operation we have only counted the number of
rotations, but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we
have at most one zig-operation during a splay.

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 183/183

Splay Trees

Bibliography

??????????????????????????????????????

7.3 Splay Trees 25. Jan. 2019

Ernst Mayr, Harald Räcke 184/183

	Splay Trees

