Efficient Algorithms and Data Structures I

Deadline: October 29, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

The biologist Andrew wants to determine, whether the unicorn he found is real or fake. Fake unicorns can be detected based on their number of colors N in their mane. Andrew knows that the following algorithm checks if a unicorn is fake:

```
Algorithm 1: UnicornCheck( \(N\) )
    for \(i=2 \ldots N-1\) do
        if \(N \bmod i==0\) then
            return Unicorn is fake!
    return Unicorn is real!
```

(a) Show that the worst-case running time of the algorithm in the uniform cost model is $\mathcal{O}(N)$.
(b) Assume that computing $p \bmod q$ takes time $\lfloor(p / q) \log p\rfloor$ in the logarithmic cost model. Show that the worst-case running time of the algorithm in the logarithmic cost model is $\mathcal{O}\left(N(\log N)^{2}\right)$.
(c) Argue for both models that the running time of algorithm UnicornCheck(N) is not polynomial in the input size.

Homework 2 (6 Points)

1. Show that $n^{\ln n} \in o\left((\ln n)^{n}\right)$.
2. Show that $n^{\ln \ln \ln n} \in o(\lceil\ln (n)\rceil!)$.
3. Show that $F_{\left\lceil H_{n}\right\rceil}^{2} \in o\left(H_{F_{n}}\right)$, where $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$ and F_{n} is the nth Fibonacci number.

Hints: Use $\ln n \leq H_{n} \leq \ln n+1$ and the closed-form representation of the Fibonacci numbers.

Homework 3 (4 Points)

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be two positive monotonically increasing functions.
Prove or disprove the following statements. Use precise arguments based on the definition of the Landau-notation shown in the lecture.

1. For any positive, monotone increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$, it holds that $f\left(\log _{2}(n)\right) \in \Theta\left(f\left(\log _{4}(n)\right)\right)$.
2. $f(n) \in \Theta(f(n / 4))$.

Homework 4 (5 Points)

Let \log denote the binary logarithm. The function $\log ^{(i)} n$ is defined inductively by

$$
\log ^{(i)} n= \begin{cases}n & \text { if } i=0 \\ \log \left(\log ^{(i-1)} n\right) & \text { if } i>0\end{cases}
$$

The iterated logarithm function $\log ^{*} n$ describes the number of logarithms that need to be applied in order to reduce n to 1 . Formally,

$$
\log ^{*} n=\min \left\{i \geq 0 \mid \log ^{(i)} n \leq 1\right\} .
$$

1. Compute $\log ^{*} 4$ and $\log ^{*}\left(2^{65536}\right)$.
2. Describe a function tower : $\mathbb{N} \rightarrow \mathbb{R}$ such that $\log ^{*}(\operatorname{tower}(n))=n$.
3. Which is asymptotically larger: $\log \left(\log ^{*} n\right)$ or $\log ^{*}(\log n)$?

Bonus Homework 1 (6 Bonus Points)

Bonus homework can be used to improve the overall score for the bonus.
We also award small prizes for well-written solutions.
During an excavation in a temple near Alexandria, archeologist Anton uncovers a scroll with a curious algorithm. Sadly, the code is not documented, as comments were only invented a few centuries later.

```
Algorithm 2: Strange \((n)\)
    \(X \leftarrow\{(i, n-i) \mid i=1, \ldots, n-1\}\)
    while \(\max _{(a, b) \in X} b>0\) do
        \(X \leftarrow\{(|a-b|, \min \{a, b\}) \mid(a, b) \in X\}\)
    return \(\max _{(a, b) \in X} a\)
```

(a) What does the algorithm compute? Prove your claim!
(b) Prove that the algorithm runs in $\mathcal{O}\left(n^{2}\right)$.
(c) Prove that the algorithm does not run in $o\left(n \log ^{k} n\right)$ for any constant k.

Tutorial Exercise 1

Late in autumn, the squirrel Alexander wants to sort all nuts that he collected over the summer by their size. He uses the traditional algorithm SQUIRREL-SORT (Algorithm 3).

```
Algorithm 3: SQUIRREL-SORT( \(A, i, j\) )
    1 if \((A[i]>A[j])\) then
        swap \(A[i] \leftrightarrow A[j]\)
    3 if \(i+1 \geq j\) then
        return
    \(5 k \leftarrow\lfloor(j-i+1) / 3\rfloor\)
    \(6 \operatorname{SQUIRREL-SORT}(A, i, j-k)\)
    \({ }_{7} \operatorname{SQUIRREL-SORT}(A, i+k, j)\)
    8 SQUIRREL-SORT \((A, i, j-k)\)
```

1. Argue that $\operatorname{SQUIRREL-SORT}(A, 1, n)$ correctly sorts a given array $A[1 \ldots n]$. Use induction over the array length.
2. Analyze how much time Alexander asymptotically needs to sort his n nuts using a recurrence relation.

I feel as if I should succeed in doing something in mathematics,
although I cannot see why it is so very important ...

- H. Keller

