Technische Universität München Fakultät für Informatik Lehrstuhl für Algorithmen und Komplexität Prof. Dr. Harald Räcke Richard Stotz

Efficient Algorithms and Data Structures I

Deadline: October 29, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

The biologist Andrew wants to determine, whether the unicorn he found is real or fake. Fake unicorns can be detected based on their number of colors N in their mane. Andrew knows that the following algorithm checks if a unicorn is fake:

Algorithm 1:	UnicornCheck(<i>N</i>)
--------------	--------------------------

1 **for** i = 2...N - 1 **do** 2 | **if** N mod i == 0 **then**

- 3 **return** Unicorn is fake!
- 4 **return** Unicorn is real!
- (a) Show that the worst-case running time of the algorithm in the uniform cost model is $\mathcal{O}(N)$.
- (b) Assume that computing $p \mod q$ takes time $\lfloor (p/q) \log p \rfloor$ in the logarithmic cost model. Show that the worst-case running time of the algorithm in the logarithmic cost model is $\mathcal{O}(N(\log N)^2)$.
- (c) Argue for both models that the running time of algorithm UnicornCheck(N) is not polynomial in the input size.

Homework 2 (6 Points)

- 1. Show that $n^{\ln n} \in o((\ln n)^n)$.
- 2. Show that $n^{\ln \ln \ln n} \in o(\lceil \ln(n) \rceil!)$.
- 3. Show that $F_{[H_n]}^2 \in o(H_{F_n})$, where $H_n = \sum_{i=1}^n \frac{1}{i}$ and F_n is the *n*th Fibonacci number.

Hints: Use $\ln n \le H_n \le \ln n + 1$ and the closed-form representation of the Fibonacci numbers.

Homework 3 (4 Points)

Let $f, g : \mathbb{N} \to \mathbb{R}^+$ be two positive monotonically increasing functions. Prove or disprove the following statements. Use precise arguments based on the definition of the Landau-notation shown in the lecture.

- 1. For any positive, monotone increasing function $f : \mathbb{R} \to \mathbb{R}$, it holds that $f(\log_2(n)) \in \Theta(f(\log_4(n)))$.
- 2. $f(n) \in \Theta(f(n/4))$.

Homework 4 (5 Points)

Let log denote the binary logarithm. The function $\log^{(i)} n$ is defined inductively by

$$\log^{(i)} n = \begin{cases} n & \text{if } i = 0\\ \log(\log^{(i-1)} n) & \text{if } i > 0 \end{cases}.$$

The *iterated logarithm function* $\log^* n$ describes the number of logarithms that need to be applied in order to reduce *n* to 1. Formally,

$$\log^* n = \min\{i \ge 0 \mid \log^{(i)} n \le 1\}$$
.

- 1. Compute $\log^{*} 4$ and $\log^{*}(2^{65536})$.
- 2. Describe a function tower : $\mathbb{N} \to \mathbb{R}$ such that $\log^*(\text{tower}(n)) = n$.
- 3. Which is asymptotically larger: $\log(\log^* n)$ or $\log^*(\log n)$?

Bonus Homework 1 (6 Bonus Points)

Bonus homework can be used to improve the overall score for the bonus. We also award small prizes for well-written solutions.

During an excavation in a temple near Alexandria, archeologist Anton uncovers a scroll with a curious algorithm. Sadly, the code is not documented, as comments were only invented a few centuries later.

Algorithm 2: Strange(<i>n</i>)	
1 <i>X</i> ← {(<i>i</i> , <i>n</i> − <i>i</i>) <i>i</i> = 1,, <i>n</i> − 1}	
² while $\max_{(a,b)\in X} b > 0$ do	
3 $ X \leftarrow \{(a-b , \min\{a, b\}) (a, b) \in$	
4 return $\max_{(a,b)\in X} a$	

- (a) What does the algorithm compute? Prove your claim!
- (b) Prove that the algorithm runs in $\mathcal{O}(n^2)$.
- (c) Prove that the algorithm does *not* run in $o(n \log^k n)$ for any constant k.

X

Tutorial Exercise 1

Late in autumn, the squirrel Alexander wants to sort all nuts that he collected over the summer by their size. He uses the traditional algorithm SQUIRREL-SORT (Algorithm 3).

```
Algorithm 3: SQUIRREL-SORT(A, i, j)
```

```
1 if (A[i] > A[j]) then

2 | swap A[i] \leftrightarrow A[j]

3 if i + 1 \ge j then

4 | return

5 k \leftarrow \lfloor (j - i + 1)/3 \rfloor

6 SQUIRREL-SORT(A, i, j - k)

7 SQUIRREL-SORT(A, i, j - k)

8 SQUIRREL-SORT(A, i, j - k)
```

- 1. Argue that SQUIRREL-SORT(A, 1, n) correctly sorts a given array A[1...n]. Use induction over the array length.
- 2. Analyze how much time Alexander asymptotically needs to sort his *n* nuts using a recurrence relation.

I feel as if I should succeed in doing something in mathematics, although I cannot see why it is so very important ... - H. Keller