Efficient Algorithms and Data Structures I

Deadline: November 5, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

(a) Give tight asymptotic upper and lower bounds for $T(n)=2 T(n / 4)+\sqrt{n} \log _{2} n$.
(b) For any constant $a \geq 27$ and n suitably large, let

$$
T_{a}(n)=a \cdot T_{a}(n / 4)+n^{2} .
$$

Give all $a \geq 64$ such that $T_{a}(n) \in \Omega\left(n^{4}\right)$.

Homework 2 (5 Points)

Given two $n \times n$ matrices A and B where n is a power of 2 , we know how to find $C=A \cdot B$ by performing n^{3} multiplications. Now let us consider the following approach. We partition A, B and C into equally sized block matrices as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \quad C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Consider the following matrices:

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right) \cdot\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) \cdot B_{11} \\
& M_{3}=A_{11} \cdot\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22} \cdot\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) \cdot B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right) \cdot\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right) \cdot\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then,

$$
C_{11}=M_{1}+M_{4}-M_{5}+M_{7}
$$

(a) Construct the matrices C_{12}, C_{21} and C_{22} from the matrices M_{i}, as demonstrated for C_{11}.
(b) Design an efficient algorithm for multiplying two $n \times n$ matrices based on these facts. Analyze its running time.

Homework 3 (5 Points)

Give tight asymptotic upper and lower bounds for $T(n)$, where $T(0)$ is an arbitrary constant, for the following recurrence relations
(a) $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$. for $n \geq 1$
(b) $T(n)=T(n / 2-1)+1$ for $n \geq 1$.

As argued in the lecture you may ignore the fact that function arguments can be non-integer.

Homework 4 (5 Points)

The recursion $T(n)$ is

$$
T(n)=\sqrt{n} T(\sqrt{n})+n .
$$

Assuming that $T(n)$ is constant for sufficiently small n, show by induction that $T(n)=\Theta(n \log \log n)$.
Hint: You may assume that all logarithms in this exercise are binary.

Tutorial Exercise 1

The H-graph of order 0 is just a simple node. The H-graphs of order 1, 2, 3, and 4 are shown in Figure 1, Figure 2, Figure 3, and Figure 4, respectively. Let $f(\ell)$ denote the number of vertices of an H-graph of order ℓ. Develop a recurrence relation for f and solve your relation using techniques from the lecture.

Figure 1: H-graph of order 1

Figure 3: H-graph of order 3

Figure 2: H-graph of order 2

Figure 4: H-graph of order 4

I like trees because they seem more resigned to the way they have to live than other things do.

- W. Cather

