Efficient Algorithms and Data Structures I

Deadline: November 12, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (4 Points)

Solve the following recurrence relation using the characteristic polynomial:

$$
a_{n}=3 a_{n-2}+2 a_{n-3} \text { for } n \geq 3 \quad \text { with } a_{0}=3, a_{1}=2, a_{2}=11 .
$$

Homework 2 (5 Points)

Calculate the value of $\sum_{i=1}^{n} i^{2}$ by setting up a recurrence relation; transforming it into a homogeneous relation via the method developed in the lecture and then solving this relation via the characteristic polynomial.

Homework 3 (5 Points)

This exercise will provide an alternative method for analyzing homogeneous linear recurrences. Consider the following recurrence:

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3} \quad \text { for } n \geq 3 .
$$

with $a_{0}=3, a_{1}=6$, and $a_{2}=14$.
Let $b_{n}=a_{n-1}$ for $n \geq 1$ and $c_{n}=b_{n-1}$ for $n \geq 2$. Finally, let $\vec{x}_{n}=\left(a_{n+2}, b_{n+2}, c_{n+2}\right)^{T}$ for $n \geq 0$.

1. Determine a matrix $M \in \mathbb{R}^{3 \times 3}$ such that $\vec{x}_{n}=M \cdot \vec{x}_{n-1}$ for $n \geq 1$.
2. Let λ be an eigenvalue of M. Show that \vec{x}_{0} can be chosen such that $\lambda^{n} \cdot \vec{x}_{0}$ is a solution to the recurrence relation derived in the first part.
3. Determine the eigenvalues of M and, for each eigenvalue, determine a corresponding eigenvector.
4. Clearly $x_{0}=(14,6,3)^{T}$. Use the eigenvectors and eigenvalues of M to solve the recurrence relation derived in the first part.
5. Determine a closed form for a_{n}.

Homework 4 (6 Points)

The honey bee Armin randomly snacks on his two favorite flowers, a red rose and a yellow tulip. Whenever he is on the rose, he stays there with probability 0.9 and moves to the tulip with probability 0.1 . If he is on the tulip, he stays there with probability 0.8 and moves to the rose with probability 0.2 .

1. Let r_{n} and t_{n} denote the probability that Armin is after timestep n on the rose and the tulip, respectively. Express r_{n} and t_{n} using a two-dimensional recurrence relation for $n \geq 1$, i.e. find a matrix P such that

$$
\binom{r_{n}}{t_{n}}=P \cdot\binom{r_{n-1}}{t_{n-1}} .
$$

Also draw the corresponding Markov chain.
2. Beatrix, the queen of the hive, asks for a closed form of r_{n} and t_{n}, assuming that Armin starts on the rose. Use the eigenvectors of P.
3. Determine the limiting distribution of Armin over the flowers. How is it linked to the eigenvectors of P ?

Hint: Use the approach from Homework 3.

Tutorial Exercise 1

Solve the following recurrence relation using generating functions:

$$
a_{n}=a_{n-1}+2^{n-1} \text { for } n \geq 1 \text { with } a_{0}=2 .
$$

[The PageRank Computation] is essentially the determination of the limiting distribution of a random walk on the web graph.

- Page, Brin, Motwani, Winograd

