Efficient Algorithms and Data Structures I

Deadline: November 19, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (6 Points)

Solve the following recurrence relations using generating functions:
(a) $a_{n}=-2 a_{n-1}-a_{n-2}$ for $n \geq 2$ with $a_{0}=1$ and $a_{1}=-1$.
(b) $a_{n}=a_{n-1}+2^{n-1}+3^{n} \quad$ for $n \geq 1$ with $a_{0}=0$.

Homework 2 (5 Points)

Let $f_{0}=0$ and $f_{n}=1 / n$ for $n>0$. The harmonic number h_{n} is defined as $\sum_{i=0}^{n} f_{i}$. Use the tables on generating functions (p. 102 and 103) to determine the following.
(a) Give a closed-form expression for $F(z)=\sum_{n \geq 0} f_{n} z^{n}$.
(b) Use (a) to determine $\sum_{n \geq 0} h_{n} / 4^{n}$.

Homework 3 (3 Points)

Give tight asymptotic bounds for the following recurrence relation:

$$
T(n)=T(\sqrt{n})+1
$$

Homework 4 (6 Points)

For some reason, we want to determine tight asymptotic upper and lower bounds for

$$
T(n)=T\left(\frac{n}{\log n}\right)+1 .
$$

We first consider the auxiliary recurrence

$$
H(m)=H(m-\log m)+1 .
$$

(a) Show by induction that $H(m) \in \Omega\left(\frac{m}{\log m}\right)$.
(b) Show by induction that $H(m) \in \mathcal{O}\left(\frac{m}{\log m}\right)$.

Hint: You may use without proof the fact that $\log (m-\log m) \geq \log m-\frac{(\log m)^{2}}{2 m}$ for $m \geq 256$.
(c) Use the results on $H(m)$ to give tight asymptotic upper and lower bounds for $T(n)$.

Tutorial Exercise 1

(a) Solve the recurrence

$$
\begin{aligned}
& g_{0}=1 ; \\
& g_{n}=\sum_{i=1}^{n} i \cdot g_{n-i} \text { for } n \geq 1 .
\end{aligned}
$$

Hint: Use fact that

$$
\sum_{n \geq 0} F_{2 n} z^{n}=\frac{z}{1-3 z+z^{2}}
$$

where F_{n} is the nth Fibonacci number.
(Extra) Prove the hint!

Tutorial Exercise 2

The depth of a node v in a binary search tree is the number of edges on the shortest path from v to the root of the tree.
Show that there exists a binary search tree with n nodes with height in $\omega(\log (n))$ and average depth in $\mathcal{O}(\log (n))$.

Tutorial Exercise 3

In this exercise, we show that the rotation distance between binary trees of n nodes is $\mathcal{O}(n)$. For trees T_{1} and T_{2} over the same nodes, the rotation distance is defined as the number of rotations needed to transform tree T_{1} into tree T_{2}.
(a) A right-linear chain is a tree in which every internal node including the root has no left child. Show that any binary tree of n nodes can be transformed into a right-linear chain using at most n rotations.
(b) Conclude that the rotation distance is only $\mathcal{O}(n)$.

> A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.

- G. Pòlya

