
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Algorithmen und Komplexität
Prof. Dr. Harald Räcke
Richard Stotz

Winter term 2018/19
Assignment 6

November 19, 2018

Efficient Algorithms and Data Structures I

Deadline: November 26, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (4 Points)

(a) If we insert a node in a red-black tree and then immediately delete the same node,
is the resulting tree always identical to the original tree? Explain your answer.

(b) For each n = 2k, describe a red-black tree on n keys that realizes the smallest possible
ratio of red internal nodes to black internal nodes.

(c) Prove or disprove: The longest simple path from a node x in a red-black tree to a
descendant leaf has length at most twice that of the shortest simple path from node
x to a descendant leaf.

Homework 2 (4 Points)
The teddy bear Alan is asked to decorate the Christmas tree for a major shopping center
in the city center of Munich. This year, he chooses to use the glass baubles to form a
nice splay tree. Initially, he obtains the following tree:

10

5 15

12 20

25

However, during the month of December, several changes must be made to the tree, as
some baubles must be inspected more closely and others are added to the tree.
Show what Alan’s tree looks like after each change. The tree must remain a splay tree.
Always carry out each operation on the result of the previous operation.

1. Search 12

2. Search 25

3. Insert 22
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Homework 3 (6 Points)

(a) Let Φ be the potential function used to analyze splay trees, i.e. Φ(T ) =
∑

v∈T r(v).
For any n > 2, construct a tree T minimizing Φ . Prove your claim.

(b) Show that splaying roughly halves the depth of every node on the search path. More
precisely, let d be the depth of some node on the search path before the splaying
operation and d′ its depth after the splaying operation. Show that d′ ≤ dd/2e + 3
holds.

Homework 4 (6 Points)
Suppose that, for the purpose of the analysis, we assign some weight w(x) to any node x
of a given splay tree. Let s(x) =

∑
y∈Tx w(y) be the sum of all node weights in the subtree

of x and the rank r(x) = log(s(x)).
Define the improved potential function of the splay tree T as Φw(T ) =

∑
x∈T r(x).

In this exercise, we show that a clever choice of weights w helps prove interesting
properties of splay trees. The simple choice w(x) = 1 gives the analysis seen in the
lecture.

(a) Let the amortized cost of operation i with cost ci be ĉi = ci +Φw(Ti)−Φw(Ti−1). Show
that any sequence of m operations on the tree T0 has a cost of∑

i

ĉi −Φw(Tm) +Φw(T0) ,

where Ti is the tree after operation i.

(b) Let W =
∑

T w(x). Show that the rank r(x) decreases at most by log(W ) − logw(x)
during any sequence of search operations.

(c) Suppose that item x is accessed q(x) > 0 times during some sequence of m search
operations on tree T , i.e. m =

∑
x q(x). Choose weights w(x) to show that the total

cost of the sequence is at most

O

m+
∑
x∈T

q(x) log(m/q(x))

 .

Hint: Adapt the amortized analysis from the lecture using your own choice of
weights. The relevant slide is Slide 183.
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Tutorial Exercise 1

(a) Describe how to implement a queue using two stacks and O(1) additional memory,
so that the amortized time for any ENQUEUE or DEQUEUE operation is O(1). The
only access you have to the stacks is through the standard subroutines PUSH and
POP.

(b) A quack is a data structure combining properties of both stacks and queues. It
can be viewed as a list of elements written left to right such that 3 operations are
possible:

(i) QPUSH: add a new item to the left end of the list

(ii) QPOP: remove the item on the left end of the list

(iii) QPULL: remove the item on the right end of the list

Implement a quack using 3 stacks and O(1) additional memory, so that the amor-
tized time for any QPUSH, QPOP, or QPULL operation is O(1). Again, you are only
allowed to access the stacks through the standard functions PUSH and POP.

Tutorial Exercise 2
Programmer Paul is given a magical closed-source library called Priorizer. A Prior-

izer supports the operations INSERT and EXTRACT-MAX. INSERT allows to insert an
integer. EXTRACT-MAX extracts the largest integer from the Priorizer and returns
Null, if the Priorizer is empty. Both operations run in constant time.

(a) Argue briefly how to use a Priorizer to obtain a data structure that supports
INSERT and EXTRACT-MIN in constant time. EXTRACT-MIN should extract the
smallest integer from the data structure.

(b) Paul’s supervisor Sunny needs a data structure that supports the operations INSERT,
EXTRACT-MAX and EXTRACT-MIN,. She requests that Paul makes all three
operations run in amortized constant time.

Help Paul by designing the requested data structure. Your implementation should
use two Priorizers. Additionally, you may use a linked list and a constant amount
of additional storage (e.g., to store an integer).

Describe precisely how the operations are implemented. Then analyze their running
times using a suitable potential function. You do not need to prove that your
implementation works correctly.

Hint: Use one Priorizer for “large” elements, the other one for “small” elements.
What can you do if one of the Priorizers runs empty?

Proudest [work]? It’s hard to choose. I

like the self-adjusting search tree data

structure that Danny Sleator and I developed.

That’s a nice one.

- R. E. Tarjan
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