Efficient Algorithms and Data Structures I

Deadline: December 17, 2018, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

Santa Claus asks you to insert the following values in a Cuckoo-Hashing hashtable. The first hash function is

$$
h_{1}(x)=(3 x+3 \bmod 13) \bmod 9,
$$

the second hash function is

$$
h_{2}(x)=(2 x+2 \bmod 19) \bmod 9 .
$$

Both hash tables use size 9 , maxsteps is set to 5. Initially, the hash table looks as follows:

Santa wants to see how the hash table looks like after each insert.
(a) Insert 9
(b) Insert 11
(c) Insert 22

Homework 2 (6 Points)

Prove the following statement:
It is possible to distribute any n keys without collision (i.e. each key is mapped to one of its two valid positions) if and only if there is no set S of keys with $|S| \leq n$ so that the keys in S have at most $|S|-1$ alternative positions in the two hash tables.
Note that each key has exactly two positions, one for each hash table. You may assume that no two keys have both positions identical.
Example: If key k_{1} has position 1 in table T_{1} and position 4 in table T_{2}, while key k_{2} has positions 6 and 4 in T_{1} and T_{2}, respectively, then k_{1} and k_{2} have 3 alternative positions.

Homework 3 (5 Points)

A class \mathcal{H} of hash functions from a finite set U into $\{0,1, \ldots, n-1\}$ with $|U|, n>1$ is ε-universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \varepsilon,
$$

where the probability is over the choice of the hash function h drawn uniformly at random from the family \mathcal{H}.
Show that for any ε-universal family of hash functions, we have

$$
\varepsilon \geq \frac{1}{n}-\frac{1}{|U|} .
$$

Homework 4 (4 Points)

Consider a bipartite (multi-)graph with partitions A, B where $|A|=|B|=n$. Let there be $m=\Theta(n)$ edges in this graph, each edge being chosen uniformly at random (i.e. there may be more than one edge between two vertices). In this graph, find, asymptotically, the expected number of
(a) 2-cycles,
(b) 3-cycles,
(c) 4-cycles.

Note: If we let n be the size of one hash table and m be the number of keys, then the above question asks for the number of 2 -cycles, 3 -cycles and 4 -cycles in cuckoo hashing where each edge in the graph denotes the 2 hash values of a function.

Tutorial Exercise 1

Consider a binary heap H implemented with a binary tree data structure (as implemented in the lectures) containing n items. Design an algorithm to find the k-th smallest item in H in $O(k \log k)$ time.

Tutorial Exercise 2

A soft-heap is a priority queue that performs insert and delete-min in $\mathcal{O}(\log 1 / \varepsilon)$ steps for any $0<\varepsilon<1 / 2$. This is achieved at the expense of "corrupting" keys, i.e. increasing them: At any time, at most εn keys in the heap are corrupted, where n is the total number of elements ever inserted into the heap. After any operation, the soft heap returns a list of newly corrupted keys.

1. We want to select the k th smallest element in a list of n elements. Let $\varepsilon=1 / 3$. Use a soft heap to find an element whose rank is between $n / 3$ and $2 n / 3$ in linear time. Apply this procedure recursively to find the k th smallest element in linear time.
2. Using the result from Homework 2 and Part 1, show that an element of rank k in a binary heap can be returned in $\mathcal{O}(k)$ steps.
```
HASH, x. There is no definition
for this word - nobody knows what
hash is.
```

