Efficient Algorithms and Data Structures I

Deadline: January 28, 2019, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (4 Points)

Prove the following statements about maximum flow networks.
(a) If all edge capacities are even integers, then the maximum flow value is an even integer.
(b) Let e be an edge that belongs to some minimum cut. Show that any maximum flow saturates the edge e.

Homework 2 (5 Points)

Let $G=(V, E)$ be a network with two vertices $s, t \in V$. We call two $s-t$-paths edge-disjoint if they do not share an edge. Two $s-t$-paths are vertex-disjoint if they have no vertices in common other than s and t.
Prove or disprove the following statements
(a) There are $k>1$ pairwise edge-disjoint $s-t$-paths in the network if and only if after deleting any $k-1$ edges, there still exists a path from s to t.
(b) There are $k>1$ pairwise vertex-disjoint $s-t$-paths in the network if and only if after deleting any $k-1$ vertices, there still exists a path from s to t.

Homework 3 (5 Points)

We say that a bipartite graph $G=(V, E)$, where $V=L \cup R$, is d-regular if every vertex $v \in V$ has degree exactly d. Every d-regular bipartite graph has $|L|=|R|$. Prove that every d-regular bipartite graph has a matching of cardinality $|L|$ by arguing that a minimum cut of the corresponding flow network has capacity $|L|$.

Homework 4 (6 Points)

The ghost Ambrosius plans to simultaneously spook each of the ℓ floors of the FMI building in order to celebrate 50 years of computer science in Munich. For the big party, he needs r_{j} ghosts for floor F_{j}.
Ambrosius must enlist ghosts from local haunted mansions for help. The ghosts living in mansions M_{1}, \ldots, M_{t} are experienced. The ghosts living in mansions M_{t+1}, \ldots, M_{k} are inexperienced. There are u_{i} ghosts living in mansion M_{i}. A ghost from mansion M_{i} will spook floor j for $c_{i j}$ Euros.

Ambrosius knows that he needs at least one experienced ghost per floor. He wants to spend as little money as possible.
(a) Show how to formulate the above problem as a Minimum-Cost Flow Problem. Explain the different elements of your construction. Make sure to specify what a flow unit represents.
(b) Given an integral minimum cost flow in your network, show how to obtain an assignment of the ghosts to the floors.

Tutorial Exercise 1

A shipping company wants to phase out a fleet of s (homogeneous) cargo ships over a period of p years. Its objective is to maximize its cash assets at the end of the p years by considering the possibility of prematurely selling ships and temporarily replacing them by charter ships.
The company faces a known nonincreasing demand for ships. Let d_{k} denote the demand of ships in year k. Each ship earns a revenue of r_{k} units in period k. At the beginning of year k, the company can sell any ship that it owns, accruing a cash inflow of s_{k} dollars. If the company does not own sufficiently many ships to meet its demand, it must hire additional charter ships. Let h_{k} denote the cost of hiring a ship for the k th year.
The shipping company wants to meet its commitments and at the same time maximize the cash assets at the end of the p th year.
Model this problem as a minimum cost flow problem!

Tutorial Exercise 2

In the famous bin packing problem, we are given n items of weights $a_{1}, a_{2}, \ldots, a_{n}$ and we are asked to pack them into as few bins as possible. Each bin can hold at most weight 1 and the items are not splittable.
Show that the bin packing problem can be solved by transforming it into a matching problem if $1 / 3<a_{j}<1$ for each $j=1, \ldots, n$.

