15 Global Mincut

Given an undirected, capacitated graph $G=(V, E, c)$ find a partition of V into two non-empty sets $S, V \backslash S$ s.t. the capacity of edges between both sets is minimized.

15 Global Mincut

Given an undirected, capacitated graph $G=(V, E, c)$ find a partition of V into two non-empty sets $S, V \backslash S$ s.t. the capacity of edges between both sets is minimized.

15 Global Mincut

Given an undirected, capacitated graph $G=(V, E, c)$ find a partition of V into two non-empty sets $S, V \backslash S$ s.t. the capacity of edges between both sets is minimized.

15 Global Mincut

Given an undirected, capacitated graph $G=(V, E, c)$ find a partition of V into two non-empty sets $S, V \backslash S$ s.t. the capacity of edges between both sets is minimized.

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph $G^{\prime}=\left(V, E^{\prime}\right)$ that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph $G^{\prime}=\left(V, E^{\prime}\right)$ that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s - t cut for all possible choices $t \in V, t \neq s$. (Time: $\mathcal{O}\left(n^{4}\right)$)

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph $G^{\prime}=\left(V, E^{\prime}\right)$ that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s - t cut for all possible choices $t \in V, t \neq s$. (Time: $\mathcal{O}\left(n^{4}\right)$)
- Let $(S, V \backslash S$) be a minimum global mincut. The above algorithm will output a cut of capacity $\operatorname{cap}(S, V \backslash S)$ whenever $|\{s, t\} \cap S|=1$.

Edge Contractions

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 89

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 89

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 89

Edge Contractions

- Given a graph $G=(V, E)$ and an edge $e=\{u, v\}$.
- The graph G / e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 89

- Edge-contractions do no decrease the size of the mincut.

Edge Contractions

We can perform an edge-contraction in time $\mathcal{O}(n)$.

Randomized Mincut Algorithm

$$
\begin{aligned}
& \text { Algorithm } 20 \text { KargerMincut }(G=(V, E, c)) \\
& \hline \text { 1: for } i=1 \rightarrow n-2 \text { do } \\
& \text { 2: choose } e \in E \text { randomly with probability } c(e) / c(E) \\
& \text { 3: } \quad G \leftarrow G / e \\
& \text { 4: return only cut in } G
\end{aligned}
$$

Randomized Mincut Algorithm

$$
\begin{aligned}
& \text { Algorithm } 20 \text { KargerMincut }(G=(V, E, c)) \\
& \hline \text { 1: for } i=1 \rightarrow n-2 \text { do } \\
& \text { 2: choose } e \in E \text { randomly with probability } c(e) / c(E) \\
& \text { 3: } \quad G \leftarrow G / e \\
& \text { 4: return only cut in } G
\end{aligned}
$$

- Let G_{t} denote the graph after the $(n-t)$-th iteration, when t nodes are left.

Randomized Mincut Algorithm

Algorithm $20 \operatorname{KargerMincut}(G=(V, E, c))$
1: for $i=1 \rightarrow n-2$ do
2: \quad choose $e \in E$ randomly with probability $c(e) / c(E)$
3: $\quad G \leftarrow G / e$
4: return only cut in G

- Let G_{t} denote the graph after the $(n-t)$-th iteration, when t nodes are left.
- Note that the final graph G_{2} only contains a single edge.

Randomized Mincut Algorithm

Algorithm $20 \operatorname{KargerMincut}(G=(V, E, c))$
1: for $i=1 \rightarrow n-2$ do
2: \quad choose $e \in E$ randomly with probability $c(e) / c(E)$
3: $\quad G \leftarrow G / e$
4: return only cut in G

- Let G_{t} denote the graph after the $(n-t)$-th iteration, when t nodes are left.
- Note that the final graph G_{2} only contains a single edge.
- The cut in G_{2} corresponds to a cut in the original graph G with the same capacity.

Randomized Mincut Algorithm

Algorithm $20 \operatorname{KargerMincut}(G=(V, E, c))$
1: for $i=1 \rightarrow n-2$ do
2: \quad choose $e \in E$ randomly with probability $c(e) / c(E)$
3: $\quad G \leftarrow G / e$
4: return only cut in G

- Let G_{t} denote the graph after the $(n-t)$-th iteration, when t nodes are left.
- Note that the final graph G_{2} only contains a single edge.
- The cut in G_{2} corresponds to a cut in the original graph G with the same capacity.
- What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

What is the probability that this algorithm returns a mincut?

Analysis

What is the probability that a given mincut A is still possible after round i ?

- It is still possible to obtain cut A in the end if so far no edge in $(A, V \backslash A)$ has been contracted.

Analysis

What is the probability that we select an edge from A in iteration i ?

Analysis

What is the probability that we select an edge from A in iteration \boldsymbol{i} ?

- Let $\min =\operatorname{cap}(A, V \backslash A)$ denote the capacity of a mincut.

Analysis

What is the probability that we select an edge from A in iteration \boldsymbol{i} ?

- Let min $=\operatorname{cap}(A, V \backslash A)$ denote the capacity of a mincut.
- Let $\operatorname{cap}(v)$ be capacity of edges incident to vertex $v \in V_{n-i+1}$.

Analysis

What is the probability that we select an edge from A in iteration \boldsymbol{i} ?

- Let min $=\operatorname{cap}(A, V \backslash A)$ denote the capacity of a mincut.
- Let $\operatorname{cap}(v)$ be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- Clearly, $\operatorname{cap}(v) \geq$ min.

Analysis

What is the probability that we select an edge from A in iteration \boldsymbol{i} ?

- Let $\min =\operatorname{cap}(A, V \backslash A)$ denote the capacity of a mincut.
- Let $\operatorname{cap}(v)$ be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- Clearly, $\operatorname{cap}(v) \geq$ min.
- Summing $\operatorname{cap}(v)$ over all edges gives

$$
2 c(E)=2 \sum_{e \in E} c(e)=\sum_{v \in V} \operatorname{cap}(v) \geq(n-i+1) \cdot \min
$$

Analysis

What is the probability that we select an edge from A in iteration \boldsymbol{i} ?

- Let $\min =\operatorname{cap}(A, V \backslash A)$ denote the capacity of a mincut.
- Let $\operatorname{cap}(v)$ be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- Clearly, $\operatorname{cap}(v) \geq$ min.
- Summing $\operatorname{cap}(v)$ over all edges gives

$$
2 c(E)=2 \sum_{e \in E} c(e)=\sum_{v \in V} \operatorname{cap}(v) \geq(n-i+1) \cdot \min
$$

- Hence, the probability of choosing an edge from the cut is at most $\min / c(E) \leq 2 /(n-i+1)$.

Analysis

The probability that we do not choose an edge from the cut in iteration i is

$$
1-\frac{2}{n-i+1}=\frac{n-i-1}{n-i+1} .
$$

Analysis

The probability that we do not choose an edge from the cut in iteration i is

$$
1-\frac{2}{n-i+1}=\frac{n-i-1}{n-i+1} .
$$

The probability that the cut is alive after iteration $n-t$ (after which t nodes are left) is at most

$$
\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1}=\frac{t(t-1)}{n(n-1)}
$$

Analysis

The probability that we do not choose an edge from the cut in iteration i is

$$
1-\frac{2}{n-i+1}=\frac{n-i-1}{n-i+1} .
$$

The probability that the cut is alive after iteration $n-t$ (after which t nodes are left) is at most

$$
\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1}=\frac{t(t-1)}{n(n-1)}
$$

Choosing $t=2$ gives that with probability $1 /\binom{n}{2}$ the algorithm computes a mincut.

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times gives that the probability that we are never successful is

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} c \ln n}
$$

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times gives that the probability that we are never successful is

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq\left(e^{-1 /\binom{n}{2}}\right)^{\binom{n}{2} c \ln n}
$$

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times gives that the probability that we are never successful is

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq\left(e^{-1 /\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq n^{-c},
$$

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times gives that the probability that we are never successful is

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq\left(e^{-1 /\binom{n}{2}}\right)^{\binom{n}{2} \ln n} \leq n^{-c},
$$

where we used $1-x \leq e^{-x}$.

Analysis

Repeating the algorithm $c \ln n\binom{n}{2}$ times gives that the probability that we are never successful is

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq\left(e^{-1 /\binom{n}{2}}\right)^{\binom{n}{2} c \ln n} \leq n^{-c},
$$

where we used $1-x \leq e^{-x}$.

Theorem 90

The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $\mathcal{O}\left(n^{4} \log n\right)$.

Improved Algorithm

```
Algorithm 21 RecursiveMincut(G=(V,E,c))
    1: for }i=1->n-n/\sqrt{}{2}\mathrm{ do
    2: choose e\inE randomly with probability c(e)/c(E)
    3: }\quadG\leftarrowG/
    4: if }|V|=2\mathrm{ return cut-value;
    5: cuta}\leftarrow\mathrm{ RecursiveMincut(G);
    6: cutb }\leftarrow\mathrm{ RecursiveMincut(G);
    7: return min{cuta, cutb}
```


Improved Algorithm

```
Algorithm 21 RecursiveMincut(G=(V,E,c))
    1: for }i=1->n-n/\sqrt{}{2}\mathrm{ do
    2: choose e\inE randomly with probability c(e)/c(E)
    3: }\quadG\leftarrowG/
    4: if }|V|=2\mathrm{ return cut-value;
    5: cuta}\leftarrow\mathrm{ RecursiveMincut(G);
    6: cutb }\leftarrow\mathrm{ RecursiveMincut(G);
    7: return min{cuta, cutb}
```

Running time:

- $T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+\mathcal{O}\left(n^{2}\right)$

Improved Algorithm

```
Algorithm 21 RecursiveMincut(G=(V,E,c))
    1: for }i=1->n-n/\sqrt{}{2}\mathrm{ do
    2: choose e\inE randomly with probability c(e)/c(E)
    3: }\quadG\leftarrowG/
    4: if }|V|=2\mathrm{ return cut-value;
    5: cuta}\leftarrow\mathrm{ RecursiveMincut(G);
    6: cutb }\leftarrow\mathrm{ RecursiveMincut(G);
    7: return min{cuta, cutb}
```

Running time:

- $T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+\mathcal{O}\left(n^{2}\right)$
- This gives $T(n)=\mathcal{O}\left(n^{2} \log n\right)$.

Probability of Success

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

$$
\frac{t(t-1)}{n(n-1)} \leq \frac{t^{2}}{n^{2}}=\frac{1}{2}
$$

as $t=\frac{n}{\sqrt{2}}$.

Probability of Success

recursion
 tree

size of rest graph

$$
\begin{gathered}
n \\
\frac{n}{\sqrt{2}} \\
\left(\frac{n}{\sqrt{2}}\right)^{2} \\
\left(\frac{n}{\sqrt{2}}\right)^{3} \\
\left(\frac{n}{\sqrt{2}}\right)^{4}
\end{gathered}
$$

Probability of Success

Probability of Success

The probability of con-
tracting an edge of the
mincut during these it-
erations is only $\frac{1}{2}$.

We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.

Probability of Success

Let for an edge e in the recursion tree, $h(e)$ denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Probability of Success

Let for an edge e in the recursion tree, $h(e)$ denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Probability of Success

Let for an edge e in the recursion tree, $h(e)$ denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 91

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
p_{d}
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
p_{d}=\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right)
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
p_{d}=\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right) \quad \operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B]
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
\begin{aligned}
p_{d} & =\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right) \quad \operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B] \\
& =p_{d-1}-\frac{p_{d-1}^{2}}{2}
\end{aligned}
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
\begin{aligned}
p_{d} & =\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right) \quad \operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B] \\
& =p_{d-1}-\frac{p_{d-1}^{2}}{2}
\end{aligned}
$$

$x-x^{2} / 2$ is monotonically increasing for $x \in[0,1]$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
\begin{aligned}
p_{d} & =\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right) \quad \operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B] \\
& =p_{d-1}-\frac{p_{d-1}^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x-x^{2} / 2 \text { is monotonically } \\
& \text { increasing for } x \in[0,1]
\end{aligned} \geq \frac{1}{d}-\frac{1}{2 d^{2}}
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
\begin{aligned}
p_{d} & = \frac { 1 } { 2 } (2 p _ { d - 1 } - p _ { d - 1 } ^ { 2 }) \longdiv { \operatorname { P r } [A \vee B] = \operatorname { P r } [A] + \operatorname { P r } [B] - \operatorname { P r } [A \wedge B] } \\
& =p_{d-1}-\frac{p_{d-1}^{2}}{2} \\
\begin{array}{l}
x-x^{2} / 2 \text { is monotonically } \\
\text { increasing for } x \in[0,1]
\end{array} & \geq \frac{1}{d}-\frac{1}{2 d^{2}} \geq \frac{1}{d}-\frac{1}{d(d+1)}
\end{aligned}
$$

Probability of Success

Proof.

- An edge e with $h(e)=1$ is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_{d} be the probability that an edge e with $h(e)=d$ is alive. For $d>1$ this happens for edge $e=\{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$
\begin{aligned}
p_{d} & =\frac{1}{2}\left(2 p_{d-1}-p_{d-1}^{2}\right) \quad \operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B] \\
& =p_{d-1}-\frac{p_{d-1}^{2}}{2} \\
\begin{array}{l}
x-x^{2} / 2 \text { is monotonically } \\
\text { increasing for } x \in[0,1]
\end{array} & \geq \frac{1}{d}-\frac{1}{2 d^{2}} \geq \frac{1}{d}-\frac{1}{d(d+1)}=\frac{1}{d+1} .
\end{aligned}
$$

15 Global Mincut

Lemma 92

One run of the algorithm can be performed in time $\mathcal{O}\left(n^{2} \log n\right)$ and has a success probability of $\Omega\left(\frac{1}{\log n}\right)$.

15 Global Mincut

Lemma 92

One run of the algorithm can be performed in time $\mathcal{O}\left(n^{2} \log n\right)$ and has a success probability of $\Omega\left(\frac{1}{\log n}\right)$.

Doing $\Theta\left(\log ^{2} n\right)$ runs gives that the algorithm succeeds with high probability. The total running time is $\mathcal{O}\left(n^{2} \log ^{3} n\right)$.

