6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial

Observations:

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The Homogenous Case

$$
\alpha \in \mathbb{C}
$$

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space.

$$
\begin{aligned}
& \alpha \cdot \tilde{J}=\alpha T[1]_{1} \alpha T[2]_{1} \alpha T[3]_{1} \ldots \\
& J_{1}+J_{2}=T_{1}[1]+T_{2}[1]_{1} T_{1}[2]+T_{2}[2]_{1} .
\end{aligned}
$$

The Homogenous Case

The solution space
$S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T}$ fulfills recurrence relation $\}$
is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{I}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

The Homogenous Case

The solution space
$S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T}$ fulfills recurrence relation $\}$
is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{I}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?

The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{I}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?
We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens.

The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{I}_{2} \in S$, then also $\alpha \mathcal{I}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?
We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$
c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \cdot \lambda^{n-2}+\cdots+c_{k} \cdot \lambda^{n-k}=0
$$

for all $n \geq k$.

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}=0
$$

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\begin{array}{r}
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0 \\
5\left(\lambda-\lambda_{i_{1}}\right)\left(\lambda-\lambda_{i_{2}}\right)\left(\lambda-\lambda_{i_{3}}\right)\left(\begin{array}{l}
\text { (}
\end{array}=0\right.
\end{array}
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

is a solution for arbitrary values α_{i}.

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1]
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{aligned}
& \alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
& \alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2]
\end{aligned}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{aligned}
& \alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
& \alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2]
\end{aligned}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{gathered}
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
\alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2] \\
\vdots \\
\alpha_{1} \cdot \lambda_{1}^{k}+\alpha_{2} \cdot \lambda_{2}^{k}+\cdots+\alpha_{k} \cdot \lambda_{k}^{k}=T[k]
\end{gathered}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right|
$$

Computing the Determinant

$$
\begin{aligned}
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right| & =\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right| \\
& =\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|
\end{aligned}
$$

Vandermonde Determinant

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|=
$$

Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b+c & d \\
1 & 1 & 1
\end{array}\right| \\
& \left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|==\mid \boldsymbol{a} \\
& \left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right| \\
& \left|\begin{array}{lll}
a & b+a & c
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
1 & 1 & 1
\end{array}\right|+\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & a & c \\
i & 1 & i
\end{array}\right|
\end{aligned}
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

$\left(\left.\begin{array}{|c|c|ccc}1 & (\Theta) & \cdots & 0 & 0 \\ 1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & & \vdots \\ 1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}\end{array} \right\rvert\,\right.$
$+\eta \cdot\left|m_{11}\right|-0\left|m_{12}\right|+0 .\left(m_{13}\right)$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|= \\
& \\
& \prod_{i=2}^{k}\left(\lambda_{i}-\lambda_{1}\right) \cdot\left|\begin{array}{ccccc}
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2}
\end{array}\right|
\end{aligned}
$$

Computing the Determinant

Repeating the above steps gives:

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot \prod_{i>\ell}\left(\lambda_{i}-\lambda_{\ell}\right)
$$

Hence, if all λ_{i} 's are different, then the determinant is non-zero.

The Homogeneous Case

What happens if the roots are not all distinct?

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

The Homogeneous Case

What happens if the roots are not all distinct?
Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
\begin{aligned}
& \quad P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k} \\
& \quad \text { II } \\
& Q[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}
\end{aligned}
$$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

Since λ_{i} is a root we can write this as $Q[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}$.
Calculating the derivative gives a polynomial that still has root λ_{i}.

$$
Q^{\prime}[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}+Q[\lambda] \cdot 2\left(\lambda-\lambda_{i}\right)
$$

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} \underbrace{n \lambda_{i}^{n}}_{T[n]}+c_{1} \underbrace{(n-1) \lambda_{i}^{n-1}}_{T[n-1]}+\cdots+c_{k} \underbrace{(n-k) \lambda_{i}^{n-k}}_{T[n-k]}=0
$$

The Homogeneous Case

Suppose λ_{i} has multiplicity j.

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.
Hence, $n^{\ell} \lambda_{i}^{n}$ is a solution for $\ell \in 0, \ldots, j-1$.

The Homogeneous Case

Lemma 7

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$
c_{0} T[n]+c_{1} T[n-1]+\cdots+c_{k} T[n-k]=0
$$

Let $\lambda_{i}, i=1, \ldots, m$ be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_{i}. Then the general solution to the recurrence is given by

$$
T[n]=\sum_{i=1}^{m} \sum_{j=0}^{\ell_{i}-1} \alpha_{i j} \cdot\left(n^{j} \lambda_{i}^{n} .\right.
$$

The full proof is omitted. We have only shown that any choice of $\alpha_{i j}$'s is a solution to the recurrence.

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

Example: Fibonacci Sequence

$$
\text { (1) } T[n](-1) T[n-1)\left(-1 T^{T}[n-2]=0\right.
$$

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Finding the roots, gives

$$
\lambda_{1 / 2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+1}=\frac{1}{2}(1 \pm \sqrt{5})
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1
$$

$$
\left(\frac{1}{2} \alpha+\frac{1}{2} \beta\right) \quad \alpha \sqrt{5}-\beta \sqrt{5}=2
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Rightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

Example: Fibonacci Sequence

Hence, the solution is

$$
\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

The Inhomogeneous Case

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

with $f(n) \neq 0$.
While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n)
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

$$
\begin{aligned}
& c_{0} T_{h}(n)+c_{1} T_{L}[n-1]+\ldots=0 \\
& c_{0} T_{p}[n]+c_{1} T_{p}[n-1]+\ldots
\end{aligned}
$$

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n),
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

I get a completely determined recurrence if I add $T[0]=1$ and $T[1]=2$.

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\lambda^{2}-2 \lambda+1=0
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$T[0]=1$ gives $\alpha=1$.

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$T[0]=1$ gives $\alpha=1$.
$T[1]=2$ gives $1+\beta=2 \Rightarrow \beta=1$.

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied $r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
T[n-1]=2 T[n-2]-T[n-3]+2(n-1)-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=3 T[n-1]-3 T[n-2]+T[n-3]+2
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=3 T[n-1]-3 T[n-2]+T[n-3]+2
$$

and so on...

