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Deletions in Hashtables

How do we delete in a hash-table?

� For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

� For open addressing this is difficult.
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Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.
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Deletions for Linear Probing

� For Linear Probing one can delete elements without using

deletion-markers.

� Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.
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Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.
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Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .
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Universal Hashing

Definition 24

A class H of hash-functions from the universe U into the set

{0, . . . , n−1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .
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Universal Hashing

Definition 25

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

� For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

� For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.
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Universal Hashing

Definition 26

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of � ≤ k
distinct keys u1, . . . , u� ∈ U , and for any set of � not necessarily

distinct hash-positions t1, . . . , t�:

Pr[h(u1) = t1 ∧ · · ·∧ h(u�) = t�] ≤
1

n�
,

where the probability is w. r. t. the choice of a random

hash-function from set H .
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Universal Hashing

Definition 27

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

� ≤ k distinct keys u1, . . . , u� ∈ U , and for any set of � not

necessarily distinct hash-positions t1, . . . , t�:

Pr[h(u1) = t1 ∧ · · ·∧ h(u�) = t�] ≤
µ
n�

,

where the probability is w. r. t. the choice of a random

hash-function from set H .
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Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291



Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291



Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291



Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291



Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).
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� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.
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� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)
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Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.
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Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .
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Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

Prtx≠ty∈Z2
p

�
tx mod n=h1∧
ty mod n=h2

�
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n

�2
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Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty ) such that tx mod n = h1

(ty mod n = h2) lies between � pn� and �pn�.
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