
Universal Hashing

Definition 29

Let d ∈ N; q ≥ (d+ 1)n be a prime; and let

ā ∈ {0, . . . , q − 1}d+1. Define for x ∈ {0, . . . , q − 1}

hā(x) :=
(d∑

i=0

aixi mod q
)

mod n .

Let H d
n := {hā | ā ∈ {0, . . . , q − 1}d+1}. The class H d

n is

(e, d+ 1)-independent.

Note that in the previous case we had d = 1 and chose ad ≠ 0.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 252/291

Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 253/291

Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 253/291

Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 253/291

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our

polynomial by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

Universal Hashing

Now, we choose d− ` + 1 other inputs and choose their value

arbitrarily. We have qd−`+1 possibilities to do this.

Therefore we have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 255/291

Universal Hashing

Now, we choose d− ` + 1 other inputs and choose their value

arbitrarily. We have qd−`+1 possibilities to do this.

Therefore we have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 255/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1

≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`

≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`

≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 256/291

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 257/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2

as otherwise the expectation would be larger than 1
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 258/291

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 259/291

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 259/291

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 259/291

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 259/291

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function

that maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are

mapped to different locations.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 259/291

Perfect Hashing

k1

k2
k3

k4
k5

k6
k7

k8

∅ m2 m3 ∅ ∅ m6 ∅ m8

U
universe
of keys

S (actual keys)

k1 k6 ∅ k4 ∅ ∅ ∅ k3 k2 ∅ ∅ ∅ k8 k5 ∅ ∅ k7 ∅

∑
imi =m

m2
2 m2

3 m2
6 m2

8

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 260/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]

= E
[

2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

The total memory that is required by all hash-tables is

O(∑jm2
j). Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of

collisions, for the first level. Since we use universal hashing we

have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 261/291

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m), because with probability at least 1/2 a random

function from a universal family will have this property.

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket. A random function hj is

collision-free with probability at least 1/2. We need O(mj) to test

this.

We only need that the hash-functions are chosen from a

universal family!!!

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 262/291

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 263/291

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 263/291

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 263/291

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 263/291

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search

time in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint

is met.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 263/291

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 264/291

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 264/291

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 264/291

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

x7

x6

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 264/291

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

x6

x7

x6

x1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 264/291

Cuckoo Hashing

Algorithm 13 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: steps← steps+1
9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 265/291

Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 266/291

Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 266/291

Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 266/291

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 267/291

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 267/291

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 267/291

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 267/291

Cuckoo Hashing: Insert

T1 T2

x = x1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1 x1

x2

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2x1 x2

x3

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x1 x2

x3

x4

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x1 x2

x3 x4

x5

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x1 x2

x3 x4

x5

x6

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x1 x2

x3 x4

x5

x6

x7

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8

x8

x4

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x8

x4

x3

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3

x8

x4

x3

x2

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

x8

x4

x3

x2

x = x1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

x

x8

x4

x3

x2

x = x1

x9

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x8

x4

x3

x2

x = x1

x9

x10

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x8

x4

x3

x2

x = x1

x9

x10

x11

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x8

x4

x3

x2

x = x1

x9

x10

x11

x12

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x12

x8

x4

x3

x2

x = x1

x9

x10

x11

x
12

x3

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing: Insert

T1 T2

x = x1

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x12

x8

x4

x3

x2

x = x1

x9

x10

x11

x
12

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 268/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the

right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 269/291

Cuckoo Hashing

A cycle-structure is active if for every key x` (linking a cell pi
from T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 270/291

Cuckoo Hashing

A cycle-structure is active if for every key x` (linking a cell pi
from T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 270/291

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 271/291

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 271/291

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 271/291

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 271/291

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size

s correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 271/291

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is

at most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 272/291

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is

at most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 272/291

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 273/291

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 273/291

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 273/291

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 273/291

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the

forward and backward links.

ñ There are at most s possibilities to choose where to place

key x.

ñ There are ms−1 possibilities to choose the keys apart from

x.

ñ There are ns−1 possibilities to choose the cells.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 273/291

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s

= µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 274/291

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 274/291

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s

≤ O
(

1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 274/291

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 274/291

	Organizational Matters
	Contents
	Literatur

	Foundations
	Goals
	Modelling Issues
	Asymptotic Notation
	Recurrences
	Guessing+Induction
	Master Theorem
	The Characteristic Polynomial
	Generating Functions
	Transformation of the Recurrence

	Data Structures
	Dictionary
	Binary Search Trees
	Red Black Trees
	Splay Trees
	Augmenting Data Structures
	Skip Lists
	Hashing
	Hashing with Chaining
	Open Addressing
	Deletions in Hashtables
	Universal Hashing
	Perfect Hashing
	Cuckoo Hashing

