
Amortized Analysis

What is the total charge made to nodes?

� The total charge is at most

�
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.
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Amortized Analysis
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Amortized Analysis
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Hence,

�
g
n(g) tow(g) ≤ n(0) tow(0)+

�

g≥1

n(g) tow(g) ≤ n log∗(n)
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Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).
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Amortized Analysis

A(x,y) =




y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) = min{i ≥ 1 : A(i, �m/n�) ≥ logn}

� A(0, y) = y + 1

� A(1, y) = y + 2

� A(2, y) = 2y + 3

� A(3, y) = 2y+3 − 3

� A(4, y) = 2222

� �� �
y+3 times

−3
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10 Introduction

Flow Network

� directed graph G = (V , E); edge capacities c(e)
� two special nodes: source s; target t;
� no edges entering s or leaving t;
� at least for now: no parallel edges;
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Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.
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Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 41

The capacity of a cut A is defined as

cap(A,V \A) :=
�

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).
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Cuts
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An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 41

The capacity of a cut A is defined as

cap(A,V \A) :=
�

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum

capacity.
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Cuts

Example 42
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The capacity of the cut is cap(A,V \A) = 28.
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Flows

Definition 43

An (s, t)-flow is a function f : E � R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
�

e∈out(v)
f (e) =

�

e∈into(v)
f (e) .

(flow conservation constraints)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 383/418



Flows

Definition 43

An (s, t)-flow is a function f : E � R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
�

e∈out(v)
f (e) =

�

e∈into(v)
f (e) .

(flow conservation constraints)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 383/418



Flows

Definition 44

The value of an (s, t)-flow f is defined as

val(f ) =
�

e∈out(s)
f (e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.
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Flows

Example 45
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The value of the flow is val(f ) = 24.
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Flows

Lemma 46 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f ) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e) .
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Proof.

val(f )
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val(f ) =
�
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=
�
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�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�
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Proof.

val(f ) =
�

e∈out(s)
f (e)

=
�

e∈out(s)
f (e)+

�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�

=
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

The last equality holds since every edge with both end-points in

A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out

are edges leaving or entering A.
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Example 47
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

cap(A,V \A) < val(f �)
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then
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Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that
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11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible

0|20

0|20

0|30

0|20
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11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

� Gf has edge e�1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e�2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

� Gf has edge e�1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e�2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

u v5|20
6|10

u v9
21

G
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Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 17 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.
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Augmenting Paths
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Augmenting Paths

0|2

0|4

3|8

10|12

5|7

8|8

5|53|20

10|10

flow value: 13

s

a

b

t

c

d

0

2

0
4

3

5

10
2

5

2

8

0

5 0
3

17

10 0

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418



Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f ) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .
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Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.
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Augmenting Path Algorithm

val(f )
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Augmenting Path Algorithm

val(f ) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)
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Augmenting Path Algorithm

val(f ) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

=
�

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the

second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.
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Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.
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Lemma 52

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial

0|500

0|500

0|1

0|500

0|500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
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Problem: The running time may not be polynomial

1|500

0|500

1|1

0|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418



A Bad Input

Problem: The running time may not be polynomial

1|500

0|500

1|1

0|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418



A Bad Input

Problem: The running time may not be polynomial

1|500

0
1
|500

1
0

|1

0
1
|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418



A Bad Input
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A Bad Input
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Problem: The running time may not be polynomial
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Problem: The running time may not be polynomial
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Problem: The running time may not be polynomial
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A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.
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Running time may be infinite!!!
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