
Amortized Analysis

What is the total charge made to nodes?

� The total charge is at most

�
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 373/418

Amortized Analysis

For g ≥ 1 we have

n(g)

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1)

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1) =

n
tow(g)

.

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1) =

n
tow(g)

.

Hence,

�
g
n(g) tow(g)

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1) =

n
tow(g)

.

Hence,

�
g
n(g) tow(g) ≤ n(0) tow(0)+

�

g≥1

n(g) tow(g)

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)�

s=tow(g−1)+1

n
2s
≤

∞�

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞�

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1) =

n
tow(g)

.

Hence,

�
g
n(g) tow(g) ≤ n(0) tow(0)+

�

g≥1

n(g) tow(g) ≤ n log∗(n)

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 374/418

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 375/418

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 375/418

Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 376/418

Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 376/418

Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 376/418

Amortized Analysis

A(x,y) =

y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) = min{i ≥ 1 : A(i, �m/n�) ≥ logn}

� A(0, y) = y + 1

� A(1, y) = y + 2

� A(2, y) = 2y + 3

� A(3, y) = 2y+3 − 3

� A(4, y) = 2222

� �� �
y+3 times

−3

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 377/418

Amortized Analysis

A(x,y) =

y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) = min{i ≥ 1 : A(i, �m/n�) ≥ logn}

� A(0, y) = y + 1

� A(1, y) = y + 2

� A(2, y) = 2y + 3

� A(3, y) = 2y+3 − 3

� A(4, y) = 2222

� �� �
y+3 times

−3

9 Union Find 13. Jan. 2020

Ernst Mayr, Harald Räcke 377/418

Part IV

Flows and Cuts

13. Jan. 2020

Ernst Mayr, Harald Räcke 378/418

The following slides are partially based on slides by Kevin Wayne.

13. Jan. 2020

Ernst Mayr, Harald Räcke 379/418

10 Introduction

Flow Network

� directed graph G = (V , E); edge capacities c(e)
� two special nodes: source s; target t;
� no edges entering s or leaving t;
� at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 380/418

10 Introduction

Flow Network

� directed graph G = (V , E); edge capacities c(e)
� two special nodes: source s; target t;
� no edges entering s or leaving t;
� at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 380/418

10 Introduction

Flow Network

� directed graph G = (V , E); edge capacities c(e)
� two special nodes: source s; target t;
� no edges entering s or leaving t;
� at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 380/418

10 Introduction

Flow Network

� directed graph G = (V , E); edge capacities c(e)
� two special nodes: source s; target t;
� no edges entering s or leaving t;
� at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 380/418

Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 381/418

Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 41

The capacity of a cut A is defined as

cap(A,V \A) :=
�

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 381/418

Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 41

The capacity of a cut A is defined as

cap(A,V \A) :=
�

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum

capacity.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 381/418

Cuts

Example 42

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

A

The capacity of the cut is cap(A,V \A) = 28.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 382/418

Flows

Definition 43

An (s, t)-flow is a function f : E � R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
�

e∈out(v)
f (e) =

�

e∈into(v)
f (e) .

(flow conservation constraints)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 383/418

Flows

Definition 43

An (s, t)-flow is a function f : E � R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
�

e∈out(v)
f (e) =

�

e∈into(v)
f (e) .

(flow conservation constraints)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 383/418

Flows

Definition 44

The value of an (s, t)-flow f is defined as

val(f) =
�

e∈out(s)
f (e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 384/418

Flows

Definition 44

The value of an (s, t)-flow f is defined as

val(f) =
�

e∈out(s)
f (e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 384/418

Flows

Example 45

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4
|4

6|9

0|15

0
|4

8|8

11|30

1|6

0
|1

5
0

|1
5

6|10

8|10

10|10

The value of the flow is val(f) = 24.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 385/418

Flows

Lemma 46 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e) .

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 386/418

Proof.

val(f)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Proof.

val(f) =
�

e∈out(s)
f (e)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Proof.

val(f) =
�

e∈out(s)
f (e)

=
�

e∈out(s)
f (e)+

�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Proof.

val(f) =
�

e∈out(s)
f (e)

=
�

e∈out(s)
f (e)+

�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�= 0

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Proof.

val(f) =
�

e∈out(s)
f (e)

=
�

e∈out(s)
f (e)+

�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�

=
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Proof.

val(f) =
�

e∈out(s)
f (e)

=
�

e∈out(s)
f (e)+

�

v∈A\{s}

� �

e∈out(v)
f (e)−

�

e∈in(v)
f (e)
�

=
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

The last equality holds since every edge with both end-points in

A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out

are edges leaving or entering A.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 387/418

Example 47

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4
|4

6|9

0|15

0
|4

8|8

11|30

1|6

0
|1

5
0

|1
5

6|10

8|10

10|10

A

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 388/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

cap(A,V \A) < val(f �)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

cap(A,V \A) < val(f �)

=
�

e∈out(A)
f �(e)−

�

e∈into(A)
f �(e)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

cap(A,V \A) < val(f �)

=
�

e∈out(A)
f �(e)−

�

e∈into(A)
f �(e)

≤
�

e∈out(A)
f �(e)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f � with larger value. Then

cap(A,V \A) < val(f �)

=
�

e∈out(A)
f �(e)−

�

e∈into(A)
f �(e)

≤
�

e∈out(A)
f �(e)

≤ cap(A,V \A)

10 Introduction 13. Jan. 2020

Ernst Mayr, Harald Räcke 389/418

11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible

0|20

0|20

0|30

0|20

0|20

flow value: 0

s

a

b

t

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible

0|20

0|20

0|30

0|20

0|20

flow value: 0

s

a

b

t

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible

0
20

|20

0|20

0
20

|30

0|20

0
20

|20

flow value: 0

s

a

b

t

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:

� start with f(e) = 0 everywhere

� find an s-t path with f(e) < c(e) on every edge

� augment flow along the path

� repeat as long as possible

20|20

0|20

20|30

0|20

20|20

flow value: 20

s

a

b

t

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 390/418

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 391/418

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 391/418

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

� Gf has edge e�1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e�2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 391/418

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

� Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

� Gf has edge e�1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e�2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

u v5|20
6|10

u v9
21

G

Gf

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 391/418

Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 17 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 392/418

Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 17 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 392/418

Augmenting Paths

0|2

0|4

0|8

0|12

0|7

0|8

0|50|20

0|10

flow value: 0

s

a

b

t

c

d

0

2

0
4

0

8

0
12

0

7

0

8

0 5
0

20

0 10

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

0|12

0|7

0|8

0|50|20

0|10

flow value: 0

s

a

b

t

c

d

0

2

0
4

0

8

0
12

0

7

0

8

0 5
0

20

0 10

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

0
8

|12

0|7

0
8

|8

0|50|20

0
8
|10

flow value: 0

s

a

b

t

c

d

0

2

0
4

0

8

0
12

0

7

0

8

0 5
0

20

0 10

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

8|12

0|7

8|8

0|50|20

8|10

flow value: 8

s

a

b

t

c

d

0

2

0
4

0

8

8
4

0

7

8

0

0 5
0

20

8 2

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

8|12

0|7

8|8

0|50|20

8|10

flow value: 8

s

a

b

t

c

d

0

2

0
4

0

8

8
4

0

7

8

0

0 5
0

20

8 2

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

8
10

|12

0
2

|7

8|8

0
2
|50|20

8
10
|10

flow value: 8

s

a

b

t

c

d

0

2

0
4

0

8

8
4

0

7

8

0

0 5
0

20

8 2

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

10|12

2|7

8|8

2|50|20

10|10

flow value: 10

s

a

b

t

c

d

0

2

0
4

0

8

10
2

2

5

8

0

2 3
0

20

10 0

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0|8

10|12

2|7

8|8

2|50|20

10|10

flow value: 10

s

a

b

t

c

d

0

2

0
4

0

8

10
2

2

5

8

0

2 3
0

20

10 0

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

0
3
|8

10|12

2
5

|7

8|8

2
5
|50

3
|20

10|10

flow value: 10

s

a

b

t

c

d

0

2

0
4

0

8

10
2

2

5

8

0

2 3
0

20

10 0

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Paths

0|2

0|4

3|8

10|12

5|7

8|8

5|53|20

10|10

flow value: 13

s

a

b

t

c

d

0

2

0
4

3

5

10
2

5

2

8

0

5 0
3

17

10 0

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 393/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 394/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

1. �⇒ 2.

This we already showed.

2. �⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. �⇒ 1.

� Let f be a flow with no augmenting paths.

� Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

� Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 395/418

Augmenting Path Algorithm

val(f)

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 396/418

Augmenting Path Algorithm

val(f) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 396/418

Augmenting Path Algorithm

val(f) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

=
�

e∈out(A)
c(e)

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 396/418

Augmenting Path Algorithm

val(f) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

=
�

e∈out(A)
c(e)

= cap(A,V \A)

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 396/418

Augmenting Path Algorithm

val(f) =
�

e∈out(A)
f (e)−

�

e∈into(A)
f (e)

=
�

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the

second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 396/418

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 397/418

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 397/418

Lemma 52

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 398/418

Lemma 52

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 398/418

A Bad Input

Problem: The running time may not be polynomial

0|500

0|500

0|1

0|500

0|500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

0|500

0|500

0|1

0|500

0|500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

0
1 |500

0|500

0
1

|1

0|500

0
1 |500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1|500

0|500

1|1

0|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1|500

0|500

1|1

0|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1|500

0
1
|500

1
0

|1

0
1
|500

1|500

flow value: 1

s

a

b

t

1

499

0 500

1

0

0 500

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1|500

1|500

0|1

1|500

1|500

flow value: 2

s

a

b

t

1

499

1 499

0

1

1 499

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1|500

1|500

0|1

1|500

1|500

flow value: 2

s

a

b

t

1

499

1 499

0

1

1 499

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

1
2 |500

1|500

0
1

|1

1|500

1
2 |500

flow value: 2

s

a

b

t

1

499

1 499

0

1

1 499

1

499

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2|500

1|500

1|1

1|500

2|500

flow value: 3

s

a

b

t

2

498

1 499

1

0

1 499

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2|500

1|500

1|1

1|500

2|500

flow value: 3

s

a

b

t

2

498

1 499

1

0

1 499

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2|500

1
2
|500

1
0

|1

1
2
|500

2|500

flow value: 3

s

a

b

t

2

498

1 499

1

0

1 499

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2|500

2|500

0|1

2|500

2|500

flow value: 4

s

a

b

t

2

498

2 498

0

1

2 498

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2|500

2|500

0|1

2|500

2|500

flow value: 4

s

a

b

t

2

498

2 498

0

1

2 498

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

2
3 |500

2|500

0
1

|1

2|500

2
3 |500

flow value: 4

s

a

b

t

2

498

2 498

0

1

2 498

2

498

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

3|500

2|500

1|1

2|500

3|500

flow value: 5

s

a

b

t

3

497

2 498

1

0

2 498

3

497

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

3|500

2|500

1|1

2|500

3|500

flow value: 5

s

a

b

t

3

497

2 498

1

0

2 498

3

497

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

3|500

2
3
|500

1
0

|1

2
3
|500

3|500

flow value: 5

s

a

b

t

3

497

2 498

1

0

2 498

3

497

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

3|500

3|500

0|1

3|500

3|500

flow value: 6

s

a

b

t

3

497

3 497

0

1

3 497

3

497

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Bad Input

Problem: The running time may not be polynomial

3|500

3|500

0|1

3|500

3|500

flow value: 6

s

a

b

t

3

497

3 497

0

1

3 497

3

497

s

a

b

t

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 399/418

A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

flow value: 0

s

a

b

c

t

d

e

f

∞

∞

∞ ∞

∞
∞

∞ r2

∞ r

∞ 0

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞

∞

∞

Running time may be infinite!!!

11.1 The Generic Augmenting Path Algorithm 13. Jan. 2020

Ernst Mayr, Harald Räcke 400/418

