$$\leq \frac{N}{2^5}$$
 hodes of ranks

What is the total charge made to nodes?

The total charge is at most

 $\sum_{g} n(g) \cdot tow(g) ,$ where n(g) is the number of nodes in group g.

For $g \ge 1$ we have

n(g)

For $g \ge 1$ we have

$$n(g) \leq \sum_{s=\underline{\mathrm{tow}}(g-1)+1}^{[\underline{\mathrm{tow}}(g)]} \frac{n}{2^s}$$

For $g \ge 1$ we have

$$n(g) \leq \sum_{s=\mathrm{tow}(g-1)+1}^{\mathrm{tow}(g)} \frac{n}{2^s} \leq \sum_{s=\mathrm{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

9 Union Find

For $g \ge 1$ we have

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}}$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g)$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \underbrace{\binom{n}{\text{tow}(g)}}.$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le \underbrace{n(0) \operatorname{tow}(0)}_{\le h} + \underbrace{\sum_{g \ge 1} n(g) \operatorname{tow}(g)}_{\le h}$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g) \le n \log^*(n)$$

9 Union Find

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

$$A(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1, 1) & \text{if } y = 0\\ A(x-1, A(x, y-1)) & \text{otw.} \end{cases}$$

 $\alpha(m,n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$

9 Union Find

$$A(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1, 1) & \text{if } y = 0\\ A(x-1, A(x, y-1)) & \text{otw.} \end{cases}$$

 $\alpha(m, n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$

•
$$A(0, y) = y + 1$$

• $A(1, y) = y + 2$
• $A(2, y) = 2y + 3$
• $A(3, y) = 2^{y+3} - 3$
• $A(4, y) = 2^{2^{2^2}} - 3$

9 Union Find

Part IV

Flows and Cuts

The following slides are partially based on slides by Kevin Wayne.

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t
- no edges entering s or leaving t;
- at least for now: no parallel edges;

10 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;

10 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;

at least for now: no parallel edges;

10 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;

10 Introduction

Definition 40

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

10 Introduction

Definition 40

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 41

The capacity of a cut A is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e) ,$$

where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

10 Introduction

Definition 40

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 41

The capacity of a cut A is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e) ,$$

where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

10 Introduction

Example 42

The capacity of the cut is $cap(A, V \setminus A) = 28$.

10 Introduction

Definition 43

An (s, t)-flow is a function $f : E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

 $0 \leq f(e) \leq c(e)$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

 $\sum_{e \in \operatorname{out}(v)} f(e) = \sum_{e \in \operatorname{into}(v)} f(e) \ .$

(flow conservation constraints)

10 Introduction

Definition 43

An (s, t)-flow is a function $f : E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

 $0 \leq f(e) \leq c(e)$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

(flow conservation constraints)

10 Introduction

Definition 44 The value of an (s, t)-flow f is defined as

 $\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$.

Maximum Flow Problem: Find an (*s*, *t*)-flow with maximum value.

10 Introduction

Definition 44 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
.

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

10 Introduction

Example 45

The value of the flow is val(f) = 24.

10 Introduction

Lemma 46 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e) \; .$$

10 Introduction

Proof.

$\operatorname{val}(f)$

10 Introduction

Proof.

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$

10 Introduction
$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
$$= \sum_{e \in \operatorname{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \operatorname{out}(v)} f(e) - \sum_{e \in \operatorname{in}(v)} f(e) \right)$$

10 Introduction

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e) = \mathbf{0}$$
$$= \sum_{e \in \operatorname{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \operatorname{out}(v)} f(e) - \sum_{e \in \operatorname{in}(v)} f(e) \right)$$

10 Introduction

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
$$= \sum_{e \in \operatorname{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \operatorname{out}(v)} f(e) - \sum_{e \in \operatorname{in}(v)} f(e) \right)$$
$$= \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

10 Introduction

Example 47

10 Introduction

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

10 Introduction

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

10 Introduction

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

10 Introduction

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

 $\operatorname{cap}(A, V \setminus A) < \operatorname{val}(f')$

10 Introduction

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$\operatorname{cap}(A, V \setminus A) < \operatorname{val}(f')$$

$$= \sum_{\substack{e \in \operatorname{out}(A) \\ \notin e \in \operatorname{into}(A)}} f'(e) - \sum_{e \in \operatorname{into}(A)} f'(e)$$

$$\stackrel{e \in \operatorname{into}(A)}{\notin \operatorname{val}(A, v-A)}$$

10 Introduction

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

1

Proof.

Suppose that there is a flow f' with larger value. Then

$$\begin{aligned} \operatorname{cap}(A, V \setminus A) &< \operatorname{val}(f') \\ &= \sum_{e \in \operatorname{out}(A)} f'(e) - \sum_{e \in \operatorname{into}(A)} f'(e) \\ &\leq \sum_{e \in \operatorname{out}(A)} f'(e) \end{aligned}$$

10 Introduction

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

1

Proof.

Suppose that there is a flow f' with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

10 Introduction

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

11.1 The Generic Augmenting Path Algorithm

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

11.1 The Generic Augmenting Path Algorithm

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

11.1 The Generic Augmenting Path Algorithm

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

11.1 The Generic Augmenting Path Algorithm

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

11.1 The Generic Augmenting Path Algorithm

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

Suppose the original graph has edges e₁ = (u, v), and e₂ = (v, u) between u and v.

11.1 The Generic Augmenting Path Algorithm

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges e₁ = (u, v), and e₂ = (v, u) between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

11.1 The Generic Augmenting Path Algorithm

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges e₁ = (u, v), and e₂ = (v, u) between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

11.1 The Generic Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 17 FordFulkerson(G = (V, E, c))1: Initialize $f(e) \leftarrow 0$ for all edges.2: while \exists augmenting path p in G_f do3: augment as much flow along p as possible

11.1 The Generic Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 17 FordFulkerson(G = (V, E, c))

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: while \exists augmenting path p in G_f do
- 3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm

11.1 The Generic Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- There exists a cut disuch that will file contact and
- Elow / is a maximum flow.
- 3. There is no augmenting path w.r.t. / ...

11.1 The Generic Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- There exists a cut A such that will fill a copilable with
- Elow / is a maximum flow.
- 3. There is no augmenting path w.r.t. / ...

11.1 The Generic Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- There exists a cut A such that will (i) = cop(A, V).
- 3 Elow / is a maximum flow.
- 3. There is no augmenting path w.r.t. / ...

11.1 The Generic Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $val(f) = cap(A, V \setminus A)$.

2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

11.1 The Generic Augmenting Path Algorithm
Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A such that $val(f) = cap(A, V \setminus A)$.
- **2.** Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

11.1 The Generic Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $val(f) = cap(A, V \setminus A)$.

 \checkmark Flow f is a maximum flow.

 \gg 3. There is no augmenting path w.r.t. f.

$1. \implies 2.$ This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let // be a flow with no augmenting paths.
- Let 6 be the set of vertices reachable from 6 in the residual graph along non-zero capacity edges.
- \gg Since there is no augmenting path we have s = 4 and t < 4.

 $1. \Rightarrow 2.$ This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let // be a flow with no augmenting paths.
- Let 6 be the set of vertices reachable from 6 in the residual graph along non-zero capacity edges.
- \gg Since there is no augmenting path we have \oplus \oplus \oplus and \oplus \oplus \oplus .

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

Let / be a flow with no augmenting paths...

 Isubien and ni c most aldadosen reactary focuse admed is call is graph along one-zero capacity edges.

Since there is no augmenting path we have $s\in\mathbb{A}$ and $t\in\mathbb{A}$.

11.1 The Generic Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

Let f be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.

Since there is no augmenting path we have $s \in A$ and $t \notin A$.

11.1 The Generic Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.

Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $\operatorname{val}(f)$

11.1 The Generic Augmenting Path Algorithm

11.1 The Generic Augmenting Path Algorithm

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$

11.1 The Generic Augmenting Path Algorithm

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$
$$= \operatorname{cap}(A, V \setminus A)$$

11.1 The Generic Augmenting Path Algorithm

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$
$$= \operatorname{cap}(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

11.1 The Generic Augmenting Path Algorithm

Analysis

Assumption: All capacities are integers between 1 and C.

Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm

Lemma 52

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm

Lemma 52

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Can we tweak the algorithm so that the running time polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial

11.1 The Generic Augmenting Path Algorithm
A Bad Input

Problem: The running time may not be polynomial

flow value: 6

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

A Pathological Input

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$

.

flow value: 0

Running time may be infinite!!!

Ernst Mayr, Harald Räcke

13. Jan. 2020 400/418