The probability that there exists an active cycle-structure is therefore at most

$$\begin{split} \sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} &= \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s \\ &\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) \end{split}$$

Here we used the fact that $(1 + \epsilon)m \le n$.

Hence,

$$\Pr[\mathsf{cycle}] = \mathcal{O}\left(\frac{1}{m^2}\right)$$
.

7.6 Hashing

29. Nov. 2019 274/291

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

7.6 Hashing

29. Nov. 2019 275/291

Sequence of visited keys:

 $x = \underbrace{x_1}_{x_2} \underbrace{x_3}_{x_4} \underbrace{x_5}_{x_5} \underbrace{x_6}_{x_7} \underbrace{x_3}_{x_3} \underbrace{x_2}_{x_3} \underbrace{x_1}_{x_1} = x, \underbrace{x_8}_{x_9} \underbrace{x_9}_{x_9} \dots$

7.6 Hashing

29. Nov. 2019 276/291

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 30 If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 30 If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

$$x = (x_1) \rightarrow x_2 \rightarrow \cdots \rightarrow (x_i) \rightarrow (x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1) \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$$

As $r \le i - 1$ the length p of the sequence is
 $s_n \qquad p = i + r + (j - i) \le [i + j - 1]$. $(P+2) \le [i + j + 1]$
 $2|s_i| = 2:$
 $E|s_2| = 2:$
 $E|s_3| = 2:$

7.6 Hashing

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

 $x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$

As $r \leq i - 1$ the length p of the sequence is

 $p=i+r+(j-i)\leq i+j-1\ .$

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least $\frac{p+2}{3}$ elements.

A path-structure of size *s* is defined by

I different cells (alternating bbw, cells from (c) and (c), i distinct keys according to a linking the cells.
The leftmost cell is either from (c) or (c).

7.6 Hashing

29. Nov. 2019 279/291

A path-structure of size s is defined by

- ▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, \dots, x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2 .

7.6 Hashing

29. Nov. 2019 279/291

A path-structure of size *s* is defined by

- ▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2 .

7.6 Hashing

29. Nov. 2019 279/291

A path-structure of size s is defined by hsti

▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).

- h2-1 s distinct keys $x = x_1, x_2, \dots, x_s$, linking the cells.
 - 2 The leftmost cell is either from T_1 or T_2 .

A path-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$\begin{array}{c|c} \hline h_1(x_\ell) = p_i \\ \hline h_1(x_\ell) = p_i \\ \hline \mu \\ \hline \mu^s \\ \hline \mu^2 \hline \hline \mu^2 \\ \hline \mu^2 \hline \mu$$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size (2t + 2)/3.

$$P \text{ keys} = \frac{P+2}{3}$$

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

7.6 Hashing

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$
$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \le 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \le 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1}$$

7.6 Hashing

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \le 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1} = 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} \ .$$

7.6 Hashing

We choose maxsteps $\geq 3\ell/2 + 1/2$.

7.6 Hashing

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle] $\leq \Pr[\exists active path-structure of size at least \frac{2maxsteps+2}{2}]$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$\begin{split} &\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\mathsf{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \end{split}$$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

 $\leq \Pr[\exists active path-structure of size at least \frac{2maxsteps+2}{3}]$

 $\leq \Pr[\exists active path-structure of size at least \ell + 1]$

 $\leq \Pr[\exists active path-structure of size exactly \ell + 1]$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful } | \text{ no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \end{aligned}$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful } | \text{ no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful} \mid \text{no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

by choosing $\ell \geq \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1+\epsilon\right)$

7.6 Hashing

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful } | \text{ no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

by choosing $\ell \ge \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1+\epsilon\right)$

This gives maxsteps = $\Theta(\log m)$.

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

 $\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$

7.6 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]

7.6 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle] $\geq c \cdot Pr[no cycle]$

7.6 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle] $\geq c \cdot Pr[no cycle]$

for a suitable constant c > 0.

7.6 Hashing

The expected number of complete steps in the successful phase of an insert operation is:

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

Cuckoo Hashing $E(X) = \sum_{t} P_{t}[X \ge t]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]
The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

= $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

= $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$ $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

- = $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] / \Pr[\text{no cycle}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

- = $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$ $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] / \Pr[\text{no cycle}]$
- $= \frac{1}{c} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$.

Hence,

E[number of steps | phase successful]

7.6 Hashing

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$
$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3}$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) .$$

$\sum_{i=1}^{n} q^{i} = \frac{1}{1-q}$ **Cuckoo Hashing** Hence, E[number of steps | phase|successful] $\leq \frac{1}{c} \sum_{i=1}^{c} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$ $\leq \frac{1}{c} \sum_{t>1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t>0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$ $= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \left[\sum_{t>0} \left(\frac{1}{(1+\epsilon)^{2/3}} \right)^t \right] = \mathcal{O}(1) \ .$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

7.6 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $O(m) \cdot O(p) = O(1)$.

7.6 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

7.6 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

7.6 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

7.6 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching massteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

OCCURS enty

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

 $\Pr[\mathsf{Y}_i \setminus \mathcal{U}] \Pr[\mathsf{Y}_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p \ .$

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

Let Z_i denote the event that the *i*-th rehash occurs:

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs:

$$\Pr[Z_i] \leq \Pr[\wedge_{j=0}^{i-1} Y_j] \leq p^i$$

$$\leq \prod_{i=1}^{i} \Pr[Y_i] \leq p^i$$

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs:

 $\Pr[Z_i] \le \Pr[\wedge_{j=0}^{i-1} Y_j] \le p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

 $E[X_i^s]$

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs:

 $\Pr[Z_i] \le \Pr[\wedge_{j=0}^{i-1} Y_j] \le p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

$$\begin{split} \mathbf{E}[X_i^{S}] &= \mathbf{E}[\mathsf{steps} \mid \mathsf{phase \ successful}] \cdot \Pr[\mathsf{phase \ successful}] \\ &+ \max \mathsf{steps} \cdot \Pr[\mathsf{not \ successful}] \end{split}$$

Let Y_i denote the event that the *i*-th rehash does not lead to a valid configuration (assuming *i*-th rehash occurs) (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs:

 $\Pr[Z_i] \le \Pr[\wedge_{j=0}^{i-1} Y_j] \le p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

$$\begin{split} \mathbf{E}[X_i^{S}] &= \mathbf{E}[\mathsf{steps} \mid \mathsf{phase \ successful}] \cdot \Pr[\mathsf{phase \ successful}] \\ &+ \max \mathsf{steps} \cdot \Pr[\mathsf{not \ successful}] = \mathcal{O}(1) \enspace . \end{split}$$

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_i^s , j < i). Hence,

7.6 Hashing

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$\mathbb{E}\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}\mathbb{E}[Z_{i}] \cdot \mathbb{E}[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

$$= \mathcal{O}(1)$$

7.6 Hashing

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$
$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$
$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$
$$= \mathcal{O}(1).$$

7.6 Hashing

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$
$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$
$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$
$$= \mathcal{O}(1)$$

7.6 Hashing

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

$$= \mathcal{O}(1) .$$

7.6 Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys. Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have m = αn/2. In order for a table-expand to occur at least αn/2 insertions are required. Similar, for a table-shrink at least αn/4 deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below αn/4 we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have m = αn/2. In order for a table-expand to occur at least αn/2 insertions are required. Similar, for a table-shrink at least αn/4 deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

7.6 Hashing

29. Nov. 2019 290/291

$$m = \alpha n \rightarrow m = \alpha \frac{n}{2}$$

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have m = αn/2. In order for a table-expand to occur at least αn/2 insertions are required. Similar, for a table-shrink at least αn/4 deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

7.6 Hashing

29. Nov. 2019 290/291

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Cuckoo Hashing

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Cuckoo Hashing

Lemma 31 *Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.*

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

7.6 Hashing

29. Nov. 2019 291/291

Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

7.6 Hashing