
Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞�

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞�

s=3

s3
�
m
n

�s

≤ µ2

m2

∞�

s=3

s3
�

1
1+ �

�s
≤ O
�

1
m2

�
.

Here we used the fact that (1+ �)m ≤ n.

Hence,

Pr[cycle] = O
�

1
m2

�
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 274/291



Cuckoo Hashing

Now, we analyze the probability that a phase is not successful

without running into a closed cycle.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 275/291



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7

Sequence of visited keys:

x = x1, x2, x3, x4, x5, x6, x7, x3, x2, x1 = x, x8, x9, . . .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 276/291



Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 30

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 277/291



Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 30

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 277/291



Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → · · ·→ xi → xr → xr−1 → · · ·→ x1 → xi+1 → · · ·→ xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → · · ·→ xi or sub-sequence

x1 → xi+1 → · · ·→ xj has at least p+2
3 elements.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 278/291



Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → · · ·→ xi → xr → xr−1 → · · ·→ x1 → xi+1 → · · ·→ xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → · · ·→ xi or sub-sequence

x1 → xi+1 → · · ·→ xj has at least p+2
3 elements.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 278/291



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

� s + 1 different cells (alternating btw. cells from T1 and T2).

� s distinct keys x = x1, x2, . . . , xs , linking the cells.

� The leftmost cell is either from T1 or T2.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 279/291



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

� s + 1 different cells (alternating btw. cells from T1 and T2).

� s distinct keys x = x1, x2, . . . , xs , linking the cells.

� The leftmost cell is either from T1 or T2.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 279/291



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

� s + 1 different cells (alternating btw. cells from T1 and T2).

� s distinct keys x = x1, x2, . . . , xs , linking the cells.

� The leftmost cell is either from T1 or T2.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 279/291



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

� s + 1 different cells (alternating btw. cells from T1 and T2).

� s distinct keys x = x1, x2, . . . , xs , linking the cells.

� The leftmost cell is either from T1 or T2.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 279/291



Cuckoo Hashing

A path-structure is active if for every key x� (linking a cell pi
from T1 and a cell pj from T2) we have

h1(x�) = pi and h2(x�) = pj

Observation:

If a phase takes at least t steps without running into a cycle

there must exist an active path-structure of size (2t + 2)/3.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 280/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
�
m
n

�s−1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
�
m
n

�s−1

≤ 2µ2
�

1
1+ �

�s−1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
�
m
n

�s−1

≤ 2µ2
�

1
1+ �

�s−1

Plugging in s = (2t + 2)/3 gives

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
�
m
n

�s−1

≤ 2µ2
�

1
1+ �

�s−1

Plugging in s = (2t + 2)/3 gives

≤ 2µ2
�

1
1+ �

�(2t+2)/3−1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size

s is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
�
m
n

�s−1

≤ 2µ2
�

1
1+ �

�s−1

Plugging in s = (2t + 2)/3 gives

≤ 2µ2
�

1
1+ �

�(2t+2)/3−1

= 2µ2
�

1
1+ �

�(2t−1)/3
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 281/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

≤ Pr[∃ active path-structure of size exactly � + 1]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

≤ Pr[∃ active path-structure of size exactly � + 1]

≤ 2µ2
� 1

1+ �
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

≤ Pr[∃ active path-structure of size exactly � + 1]

≤ 2µ2
� 1

1+ �
�� ≤ 1

m2

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

≤ Pr[∃ active path-structure of size exactly � + 1]

≤ 2µ2
� 1

1+ �
�� ≤ 1

m2

by choosing � ≥ log
� 1

2µ2m2

�
/log
� 1

1+�
� = log

�
2µ2m2

�
/log
�
1+ ��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

We choose maxsteps ≥ 3�/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is

at most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least � + 1]

≤ Pr[∃ active path-structure of size exactly � + 1]

≤ 2µ2
� 1

1+ �
�� ≤ 1

m2

by choosing � ≥ log
� 1

2µ2m2

�
/log
� 1

1+�
� = log

�
2µ2m2

�
/log
�
1+ ��

This gives maxsteps = Θ(logm).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 282/291



Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
� 1
m2

�

and

Pr[unsuccessful | no cycle] ≤ O
� 1
m2

�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 283/291



Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
� 1
m2

�

and

Pr[unsuccessful | no cycle] ≤ O
� 1
m2

�

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 283/291



Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
� 1
m2

�

and

Pr[unsuccessful | no cycle] ≤ O
� 1
m2

�

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 283/291



Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
� 1
m2

�

and

Pr[unsuccessful | no cycle] ≤ O
� 1
m2

�

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

for a suitable constant c > 0.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 283/291



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
�

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

�

t≥1

2µ2
� 1

1+ �
�(2t−1)/3

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

�

t≥1

2µ2
� 1

1+ �
�(2t−1)/3 = 1

c

�

t≥0

2µ2
� 1

1+ �
�(2(t+1)−1)/3

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

�

t≥1

2µ2
� 1

1+ �
�(2t−1)/3 = 1

c

�

t≥0

2µ2
� 1

1+ �
�(2(t+1)−1)/3

= 2µ2

c(1+ �)1/3
�

t≥0

� 1
(1+ �)2/3

�t

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

�

t≥1

2µ2
� 1

1+ �
�(2t−1)/3 = 1

c

�

t≥0

2µ2
� 1

1+ �
�(2(t+1)−1)/3

= 2µ2

c(1+ �)1/3
�

t≥0

� 1
(1+ �)2/3

�t = O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

�

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

�

t≥1

2µ2
� 1

1+ �
�(2t−1)/3 = 1

c

�

t≥0

2µ2
� 1

1+ �
�(2(t+1)−1)/3

= 2µ2

c(1+ �)1/3
�

t≥0

� 1
(1+ �)2/3

�t = O(1) .

This means the expected cost for a successful phase is constant

(even after accounting for the cost of the incomplete step that

finishes the phase).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 285/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is�
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is

O(m) · O(p) = O(1).
7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 286/291



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi ]



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi ] = E[steps | phase successful] · Pr[phase sucessful]

+maxsteps ·Pr[not sucessful]



Formal Proof

Let Yi denote the event that the i-th rehash does not lead to a

valid configuration (assuming i-th rehash occurs) (i.e., one of the

m+ 1 insertions fails):

Pr[Yi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi ] = E[steps | phase successful] · Pr[phase sucessful]

+maxsteps ·Pr[not sucessful] = O(1) .



The expected cost for all rehashes is

E
��

i

�
s ZiX

s
i

�

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
��

i

�
s ZiX

i
s

�
=
�
i

�
s E[Zi] · E[Xis]

≤ O(m) ·
�
i p

i

≤ O(m) · p
1− p

= O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 288/291



The expected cost for all rehashes is

E
��

i

�
s ZiX

s
i

�

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
��

i

�
s ZiX

i
s

�
=
�
i

�
s E[Zi] · E[Xis]

≤ O(m) ·
�
i p

i

≤ O(m) · p
1− p

= O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 288/291



The expected cost for all rehashes is

E
��

i

�
s ZiX

s
i

�

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
��

i

�
s ZiX

i
s

�
=
�
i

�
s E[Zi] · E[Xis]

≤ O(m) ·
�
i p

i

≤ O(m) · p
1− p

= O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 288/291



The expected cost for all rehashes is

E
��

i

�
s ZiX

s
i

�

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
��

i

�
s ZiX

i
s

�
=
�
i

�
s E[Zi] · E[Xis]

≤ O(m) ·
�
i p

i

≤ O(m) · p
1− p

= O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 288/291



The expected cost for all rehashes is

E
��

i

�
s ZiX

s
i

�

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
��

i

�
s ZiX

i
s

�
=
�
i

�
s E[Zi] · E[Xis]

≤ O(m) ·
�
i p

i

≤ O(m) · p
1− p

= O(1) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 288/291



Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure

or cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 289/291



Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure

or cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 289/291



Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure

or cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 289/291



Cuckoo Hashing

How do we make sure that n ≥ (1 + �)m?

� Let α := 1/(1+ �).
� Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

� Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

� Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

� Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 290/291



Cuckoo Hashing

How do we make sure that n ≥ (1 + �)m?

� Let α := 1/(1+ �).
� Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

� Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

� Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

� Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 290/291



Cuckoo Hashing

How do we make sure that n ≥ (1 + �)m?

� Let α := 1/(1+ �).
� Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

� Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

� Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

� Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 290/291



Cuckoo Hashing

How do we make sure that n ≥ (1 + �)m?

� Let α := 1/(1+ �).
� Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

� Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

� Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

� Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 290/291



Cuckoo Hashing

How do we make sure that n ≥ (1 + �)m?

� Let α := 1/(1+ �).
� Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

� Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

� Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

� Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 290/291



Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number

of keys/total number of hash-table slots) is at most 1
2(1+�) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 291/291



Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number

of keys/total number of hash-table slots) is at most 1
2(1+�) .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 291/291


