Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\begin{aligned}
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} & =\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s} \\
& \leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3}\left(\frac{1}{1+\epsilon}\right)^{s} \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
\end{aligned}
$$

Here we used the fact that $(1+\epsilon) m \leq n$.

Hence,

$$
\operatorname{Pr}[\text { cycle }]=\mathcal{O}\left(\frac{1}{m^{2}}\right) .
$$

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

Cuckoo Hashing

Sequence of visited keys:

$$
x=\left(x_{1}\right)\left(x_{2},\left(x_{3}\right),\left(x_{4}\right),\left(x_{5}\right),\left(x_{6},\left(x_{7}\right)\left(x_{3}\right),(x),\left(x_{1}\right)=x,\left(x_{8}\right),\left(x_{9}\right) \cdots\right.\right.
$$

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 30

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

$$
\begin{aligned}
& \text { The sequence is of the form: } \\
& x=x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i} \rightarrow\left|x_{r} \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_{1}\right| \rightarrow \frac{x_{i+1} \rightarrow \cdots \rightarrow x_{j}}{j-i} \\
& \text { As } r \leq i-\text { Q he length } p \text { of the sequence is }^{\text {in }}
\end{aligned}
$$

$$
S_{\cap} \quad p=i+r+(j-i) \leq i+j-1 \cdot p+2 \leq i+j+1
$$

$$
2\left|s_{1}\right|=2 i
$$

$$
\left|S_{2}\right|=j-i+1
$$

Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
$x=x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i} \rightarrow x_{r} \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$
As $r \leq i-1$ the length p of the sequence is

$$
p=i+r+(j-i) \leq i+j-1
$$

Either sub-sequence $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i}$ or sub-sequence $x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$ has at least $\frac{p+2}{3}$ elements.

Cuckoo Hashing

A path-structure of size s is defined by

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.

Cuckoo Hashing

A path-structure of size s is defined by
$h^{\mathrm{s+1}} s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).
$m^{s-1} s$ distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
2 The leftmost cell is either from T_{1} or T_{2}.

Cuckoo Hashing

A path-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
\begin{aligned}
& \qquad \frac{\mu}{h_{1}\left(x_{\ell}\right)=p_{i}} \frac{h_{2}\left(x_{\ell}\right)=p_{j}}{n^{s}} \\
& \text { Observation: and }
\end{aligned}
$$

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size $(2 t+2) / 3$.

$$
p \text { keys } \Rightarrow \frac{p+2}{3}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 S}}$.

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most
$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1}
\end{aligned}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most
$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}$

$$
\leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
$$

Plugging in $s=(2 t+2) / 3$ gives

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Plugging in $s=(2 t+2) / 3$ gives

$$
\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t+2) / 3-1}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Plugging in $s=(2 t+2) / 3$ gives

$$
\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t+2) / 3-1}=2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$.

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\operatorname{Pr}[\text { unsuccessful | no cycle] }
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful | no cycle }] \\
& \quad \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful | no cycle }] \\
& \quad \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \quad \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell}
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

by choosing $\ell \geq \log \left(\frac{1}{2 \mu^{2} m^{2}}\right) / \log \left(\frac{1}{1+\epsilon}\right)=\log \left(2 \mu^{2} m^{2}\right) / \log (1+\epsilon)$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

by choosing $\ell \geq \log \left(\frac{1}{2 \mu^{2} m^{2}}\right) / \log \left(\frac{1}{1+\epsilon}\right)=\log \left(2 \mu^{2} m^{2}\right) / \log (1+\epsilon)$
This gives maxsteps $=\Theta(\log m)$.

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\operatorname{Pr}[\text { successful }]=\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful | no cycle }]
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\begin{aligned}
\operatorname{Pr}[\text { successful }] & =\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \geq c \cdot \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\begin{aligned}
\operatorname{Pr}[\text { successful }] & =\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \geq c \cdot \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

for a suitable constant $c>0$.

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

Cuckoo Hashing $\quad E[X]=\sum_{t} \operatorname{Pr}[x \geqslant t]$

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \qquad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

```
E [number of steps | phase successful]
    \(=\sum_{t \geq 1} \operatorname{Pr}[\) search takes at least \(t\) steps \(\mid\) phase successful \(]\)
```

We have
$\operatorname{Pr}[$ search at least t steps | successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps | successful] } \\
& \quad=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { successful }] \\
&=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { successful }] \\
&=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { no cycle }] / \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{Pr}[& \text { search at least } t \text { steps } \mid \text { successful }] \\
& =\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { no cycle }] / \operatorname{Pr}[\text { no cycle }] \\
& =\frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] .
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps \| phase successful]

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }]
$$

Cuckoo Hashing

Hence,
E[number of steps \| phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}=\mathcal{O}(1) .
\end{aligned}
$$

Cuckoo Hashing

Hence,

$$
\begin{aligned}
& \text { E[number of steps | phase successful] } \\
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle] } \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}=\mathcal{O}(1) \text {. }
\end{aligned}
$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

Cuckoo Hashing

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

The expected number of unsuccessful rehashes is

$$
\sum_{i \geq 1} p^{i}=\frac{1}{1-p}-1=\frac{p}{1-p}=\mathcal{O}(p) .
$$

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / \mathrm{m}^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

The expected number of unsuccessful rehashes is

$$
\sum_{i \geq 1} p^{i}=\frac{1}{1-p}-1=\frac{p}{1-p}=\mathcal{O}(p) .
$$

Therefore the expected cost for re-hashes is
$\mathcal{O}(m) \cdot \mathcal{O}(p)=\mathcal{O}(1)$.

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):
$\left.\operatorname{Pv}\left[Y_{i} \mid Z_{i}\right] \operatorname{Pr|} \mid Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p$.

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\begin{gathered}
\psi_{i} \mid z_{c} \\
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p .
\end{gathered}
$$

Let Z_{i} denote the event that the i-th rehash occurs:

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

$$
\begin{aligned}
\operatorname{Pr}\left[Z_{i}\right] & \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i} \\
& \leq \prod P_{v}\left[\psi_{\dot{j}} \mid z_{j}\right] \leq p^{i}
\end{aligned}
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Let $X_{i}^{s}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\mathrm{E}\left[X_{i}^{s}\right]
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Let $X_{i}^{s}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\begin{aligned}
\mathrm{E}\left[X_{i}^{s}\right]= & \mathrm{E}[\text { steps } \mid \text { phase successful }] \cdot \operatorname{Pr}[\text { phase sucessful }] \\
& + \text { maxsteps } \cdot \operatorname{Pr}[\text { not sucessful }]
\end{aligned}
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Let $X_{i}^{s}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\begin{aligned}
\mathrm{E}\left[X_{i}^{s}\right]= & \mathrm{E}[\text { steps } \mid \text { phase successful }] \cdot \operatorname{Pr}[\text { phase sucessful }] \\
& + \text { maxsteps } \cdot \operatorname{Pr}[\text { not sucessful }]=\mathcal{O}(1) .
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

$$
\begin{array}{cc}
\frac{1}{m^{2}} & z_{i} \text { fails } \\
11 & \text { Probabilg of rchuh fail i is } p \\
p & \operatorname{Pr}\left[z_{i}=1\right] \leq p^{i}
\end{array}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right]=\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right]
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i}
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i} \\
& \leq \mathcal{O}(m) \cdot \frac{p}{1-p}
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i} \\
& \leq \mathcal{O}(m) \cdot \frac{p}{1-p} \\
& =\mathcal{O}(1)
\end{aligned}
$$

Cuckoo Hashing

What kind of hash-functions do we need?

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.
Therefore, it is sufficient to have $(\mu, \Theta(\log m))$-independent hash-functions.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).

Cuckoo Hashing

$$
m=\alpha n \rightarrow m=\alpha \frac{n}{2}
$$

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n / 2$. In order for a table-expand to occur at least $\alpha n / 2$ insertions are required. Similar, for a table-shrink at least $\alpha n / 4$ deletions must occur.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n / 2$. In order for a table-expand to occur at least $\alpha n / 2$ insertions are required. Similar, for a table-shrink at least $\alpha n / 4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

