## Proof of Lemma 15.

Induction on the height of v.

**base case** (height(v) = 0)

- If beight bod (maximum distance btw. 5: and a node in the sub-tree rooted at (2) is 6 then 0: is a leaf.
- The black height of w is 0.
- The sub-tree rooted at 10 contains () = 2<sup>00000</sup> = 0 inner vertices.



7.2 Red Black Trees

## Proof of Lemma 15.

## Induction on the height of v.

**base case** (height(v) = 0)

- If Sequences (maximum distance bbs: scand a node in the sub-tree rooted at sc) is difference is a leaf.
- The black height of w is 0.
- The sub-tree rooted at a contains () = 2<sup>2010</sup> = 0 inner () vertices.



7.2 Red Black Trees

## Proof of Lemma 15.

Induction on the height of v.

**base case (height**(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- The sub-tree rooted at v contains 0 = 2<sup>bh(v)</sup> 1 inner vertices.



7.2 Red Black Trees

## Proof of Lemma 15.

Induction on the height of *v*.

**base case (height**(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2<sup>bh(v)</sup> 1 inner vertices.



7.2 Red Black Trees

## Proof of Lemma 15.

Induction on the height of *v*.

**base case (height**(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- The sub-tree rooted at v contains  $0 = 2^{bh(v)} 1$  inner vertices.



7.2 Red Black Trees

## Proof (cont.)

induction step

- Supose wis a node with height(w) > 0...
- whas two children with strictly smaller height.
- These children (Course) either have block? = block? or block? = block?
- By induction hypothesis both sub-trees contain at least <sup>1000000</sup> internal vertices.



7.2 Red Black Trees

$$\eta \longrightarrow h+1$$

for every vertex with height  $(x) \leq h$ 

 $\# internal(T_x) \ge 2^{bn(x)} - 1$ 

Proof (cont.)

## induction step

- Supose v is a node with  $\operatorname{height}(v) > 0$ .
- v has two children with strictly smaller height.
- ► These children (c<sub>1</sub>, c<sub>2</sub>) either have bh(c<sub>i</sub>) = bh(v) or bh(c<sub>i</sub>) = bh(v) 1.
- **b** By induction hypothesis both sub-trees contain at least  $2^{bh(v)-1} 1$  internal vertices.

ht1

Then  $T_v$  contains at least  $2(2^{bh(v)-1} - 1) + 1 \ge 2^{bh(v)} - 1$  vertices.



7.2 Red Black Trees

## Proof (cont.)

#### induction step

- Supose v is a node with height(v) > 0.
- $\triangleright$  v has two children with strictly smaller height.
- These children ( $c_1$ ,  $c_2$ ) either have  $bh(c_i) = bh(v)$  or  $bh(c_i) = bh(v) 1$ .
- **b** By induction hypothesis both sub-trees contain at least  $2^{bh(v)-1} 1$  internal vertices.
- Then  $T_v$  contains at least  $2(2^{bh(v)-1}-1) + 1 \ge 2^{bh(v)} 1$  vertices.



7.2 Red Black Trees

#### Proof (cont.)

## induction step

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c<sub>1</sub>, c<sub>2</sub>) either have bh(c<sub>i</sub>) = bh(v) or bh(c<sub>i</sub>) = bh(v) 1.
- By induction hypothesis both sub-trees contain at least  $2^{bh(v)-1} 1$  internal vertices.

Co

Then  $T_v$  contains at least  $2(2^{bh(v)-1} - 1) + 1 \ge 2^{bh(v)} - 1$  vertices.



7.2 Red Black Trees

#### Proof (cont.)

#### induction step

- Supose v is a node with height(v) > 0.
- $\triangleright$  v has two children with strictly smaller height.
- These children (c<sub>1</sub>, c<sub>2</sub>) either have bh(c<sub>i</sub>) = bh(v) or bh(c<sub>i</sub>) = bh(v) 1.
- **b** By induction hypothesis both sub-trees contain at least  $2^{bh(v)-1} 1$  internal vertices.
- ► Then  $T_v$  contains at least  $2(2^{bh(v)-1}-1) + 1 \ge 2^{bh(v)} 1$  vertices.



7.2 Red Black Trees

## Proof (cont.)

#### induction step

- Supose v is a node with height(v) > 0.
- $\triangleright$  v has two children with strictly smaller height.
- These children (c<sub>1</sub>, c<sub>2</sub>) either have bh(c<sub>i</sub>) = bh(v) or bh(c<sub>i</sub>) = bh(v) 1.
- ▶ By induction hypothesis both sub-trees contain at least  $2^{bh(v)-1} 1$  internal vertices.
- ► Then  $T_v$  contains at least  $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$  vertices.



## Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least  $2^{h/2} - 1$  internal vertices. Hence,  $2^{h/2} - 1 \le n$ .

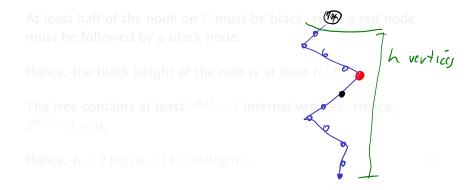
Hence,  $h \leq 2\log(n+1) = O(\log n)$ .



7.2 Red Black Trees

#### Proof of Lemma 13.

# Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.





7.2 Red Black Trees

#### Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least  $2^{h/2} - 1$  internal vertices. Hence,  $2^{h/2} - 1 \le n$ .

Hence,  $h \le 2\log(n+1) = O(\log n)$ .



7.2 Red Black Trees

#### Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least  $2^{h/2} - 1$  internal vertices. Hence,  $2^{h/2} - 1 \le n$ .

Hence,  $h \le 2\log(n+1) = O(\log n)$ .



7.2 Red Black Trees

#### Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least  $2^{h/2} - 1$  internal vertices. Hence,  $2^{h/2} - 1 \le n$ .

Hence,  $h \le 2\log(n+1) = O(\log n)$ .



7.2 Red Black Trees

#### Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least  $2^{h/2} - 1$  internal vertices. Hence,  $2^{h/2} - 1 \le n$ .

Hence,  $h \leq 2\log(n+1) = \mathcal{O}(\log n)$ .

## **Definition 1**

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.



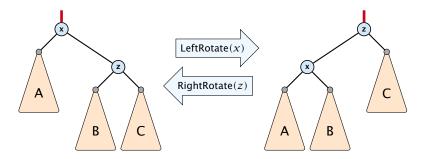
We need to adapt the insert and delete operations so that the red black properties are maintained.



7.2 Red Black Trees

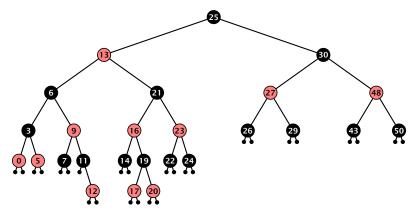
## **Rotations**

The properties will be maintained through rotations:





7.2 Red Black Trees

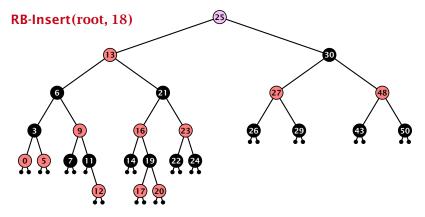


#### Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

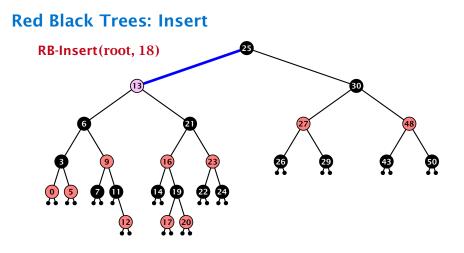


#### Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Ernst Mayr, Harald Räcke

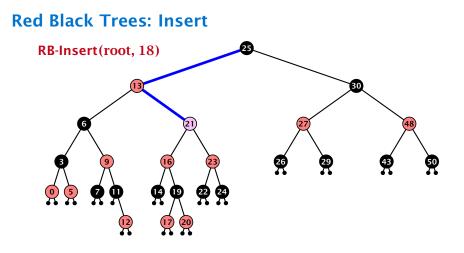
7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

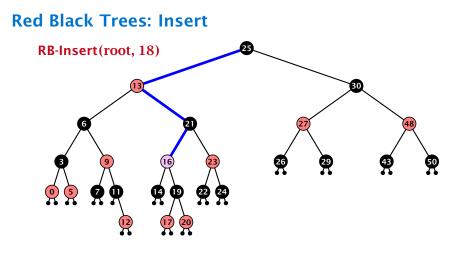
Ernst Mayr, Harald Räcke

7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

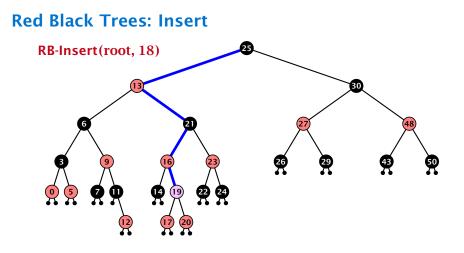
7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

Ernst Mayr, Harald Räcke

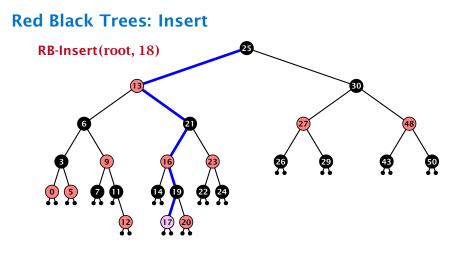
7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

Ernst Mayr, Harald Räcke

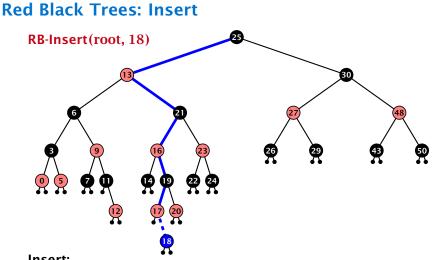
7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

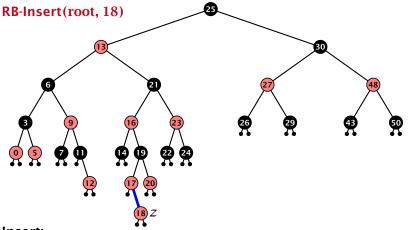
Ernst Mayr, Harald Räcke

7.2 Red Black Trees



- first make a normal insert into a binary search tree
- then fix red-black properties

7 2 Red Black Trees



#### Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

#### Invariant of the fix-up algorithm:

#### z is a red node

- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red
    - (most important case)
    - or the parent does not exist
      - (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



#### Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red (most important case) or the parent does not exist (violation since root must be black
- If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



7.2 Red Black Trees

#### Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red
    - (most important case)
  - or the parent does not exist
    - (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



7.2 Red Black Trees

#### Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red (most important case)
    - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



#### Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red (most important case)
  - or the parent does not exist (violation since root must be black)

If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



#### Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
  - either both of them are red (most important case)
  - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.



| Algorithm 10 InsertFix $(z)$ |                                                                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1:                           | while $parent[z] \neq null and col[parent[z]] = red do$                                                                             |
| 2:                           | if $parent[z] = left[gp[z]]$ then                                                                                                   |
| 3:                           | $uncle \leftarrow right[grandparent[z]]$                                                                                            |
| 4:                           | <pre>if col[uncle] = red then</pre>                                                                                                 |
| 5:                           | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$                                                                              |
| 6:                           | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$                                                                           |
| 7:                           | else                                                                                                                                |
| 8:                           | if $z = right[parent[z]]$ then                                                                                                      |
| 9:                           | $z \leftarrow p[z]$ ; LeftRotate(z);                                                                                                |
| 10:                          | $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red};$ |
| 11:                          | RightRotate $(gp[z]);$                                                                                                              |
| 12:                          | else same as then-clause but right and left exchanged                                                                               |
| 13:                          | $col(root[T]) \leftarrow black;$                                                                                                    |

| Alg | Algorithm 10 InsertFix $(z)$                                                     |  |  |
|-----|----------------------------------------------------------------------------------|--|--|
| 1:  | 1: while parent[ $z$ ] $\neq$ null and col[parent[ $z$ ]] = red do               |  |  |
| 2:  | <b>if</b> $parent[z] = left[gp[z]]$ <b>then</b> z in left subtree of grandparent |  |  |
| 3:  | $uncle \leftarrow right[grandparent[z]]$                                         |  |  |
| 4:  | <pre>if col[uncle] = red then</pre>                                              |  |  |
| 5:  | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$                           |  |  |
| 6:  | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$                        |  |  |
| 7:  | else                                                                             |  |  |
| 8:  | if $z = right[parent[z]]$ then                                                   |  |  |
| 9:  | $z \leftarrow p[z]$ ; LeftRotate(z);                                             |  |  |
| 10: | $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$                         |  |  |
| 11: | RightRotate(gp[z]);                                                              |  |  |
| 12: | else same as then-clause but right and left exchanged                            |  |  |
| 13: | $col(root[T]) \leftarrow black;$                                                 |  |  |

| Al  | Algorithm 10 InsertFix $(z)$                              |  |  |
|-----|-----------------------------------------------------------|--|--|
| 1:  | while $parent[z] \neq null and col[parent[z]] = red do$   |  |  |
| 2:  | if $parent[z] = left[gp[z]]$ then                         |  |  |
| 3:  | $uncle \leftarrow right[grandparent[z]]$                  |  |  |
| 4:  | if col[ <i>uncle</i> ] = red then Case 1: uncle red       |  |  |
| 5:  | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$    |  |  |
| 6:  | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ |  |  |
| 7:  | else                                                      |  |  |
| 8:  | if $z = right[parent[z]]$ then                            |  |  |
| 9:  | $z \leftarrow p[z]$ ; LeftRotate(z);                      |  |  |
| 10: | $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$  |  |  |
| 11: | RightRotate $(gp[z]);$                                    |  |  |
| 12: | else same as then-clause but right and left exchanged     |  |  |
| 13: | $col(root[T]) \leftarrow black;$                          |  |  |

| Alg | Algorithm 10 InsertFix( <i>z</i> )                        |  |  |
|-----|-----------------------------------------------------------|--|--|
| 1:  | while $parent[z] \neq null and col[parent[z]] = red do$   |  |  |
| 2:  | if $parent[z] = left[gp[z]]$ then                         |  |  |
| 3:  | $uncle \leftarrow right[grandparent[z]]$                  |  |  |
| 4:  | <pre>if col[uncle] = red then</pre>                       |  |  |
| 5:  | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$    |  |  |
| 6:  | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ |  |  |
| 7:  | else Case 2: uncle black                                  |  |  |
| 8:  | if $z = right[parent[z]]$ then                            |  |  |
| 9:  | $z \leftarrow p[z]$ ; LeftRotate(z);                      |  |  |
| 10: | $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$  |  |  |
| 11: | RightRotate $(gp[z]);$                                    |  |  |
| 12: | else same as then-clause but right and left exchanged     |  |  |
| 13: | $col(root[T]) \leftarrow black;$                          |  |  |



7.2 Red Black Trees

| Alg | Algorithm 10 InsertFix( <i>z</i> )                        |  |  |
|-----|-----------------------------------------------------------|--|--|
| 1:  | while $parent[z] \neq null and col[parent[z]] = red do$   |  |  |
| 2:  | if $parent[z] = left[gp[z]]$ then                         |  |  |
| 3:  | $uncle \leftarrow right[grandparent[z]]$                  |  |  |
| 4:  | <pre>if col[uncle] = red then</pre>                       |  |  |
| 5:  | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$    |  |  |
| 6:  | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ |  |  |
| 7:  | else                                                      |  |  |
| 8:  | if $z = right[parent[z]]$ then 2a: $z$ right child        |  |  |
| 9:  | $z \leftarrow p[z]$ ; LeftRotate(z);                      |  |  |
| 10: | $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$  |  |  |
| 11: | RightRotate $(gp[z]);$                                    |  |  |
| 12: | else same as then-clause but right and left exchanged     |  |  |
| 13: | $col(root[T]) \leftarrow black;$                          |  |  |

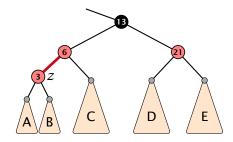


7.2 Red Black Trees

| Alg | Algorithm 10 InsertFix(z)                                                 |  |  |
|-----|---------------------------------------------------------------------------|--|--|
| 1:  | 1: while parent[ $z$ ] $\neq$ null and col[parent[ $z$ ]] = red do        |  |  |
| 2:  | if $parent[z] = left[gp[z]]$ then                                         |  |  |
| 3:  | $uncle \leftarrow right[grandparent[z]]$                                  |  |  |
| 4:  | <pre>if col[uncle] = red then</pre>                                       |  |  |
| 5:  | $col[p[z]] \leftarrow black; col[u] \leftarrow black;$                    |  |  |
| 6:  | $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$                 |  |  |
| 7:  | else                                                                      |  |  |
| 8:  | if $z = right[parent[z]]$ then                                            |  |  |
| 9:  | $z \leftarrow p[z]$ ; LeftRotate(z);                                      |  |  |
| 10: | $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child$ |  |  |
| 11: | RightRotate $(gp[z]);$                                                    |  |  |
| 12: | else same as then-clause but right and left exchanged                     |  |  |
| 13: | $col(root[T]) \leftarrow black;$                                          |  |  |

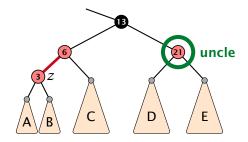


7.2 Red Black Trees



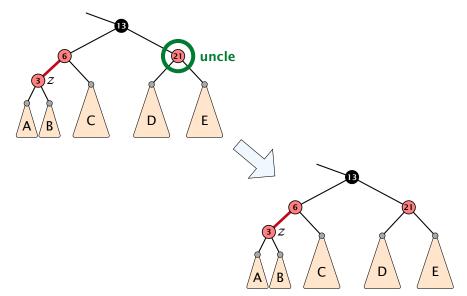


7.2 Red Black Trees



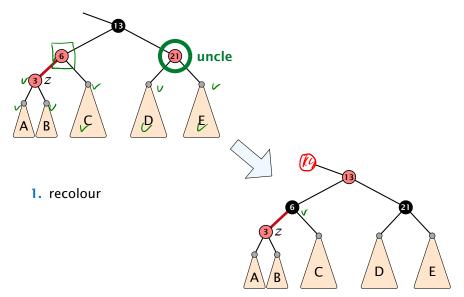


7.2 Red Black Trees



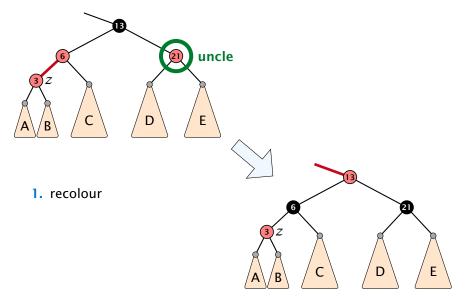


7.2 Red Black Trees



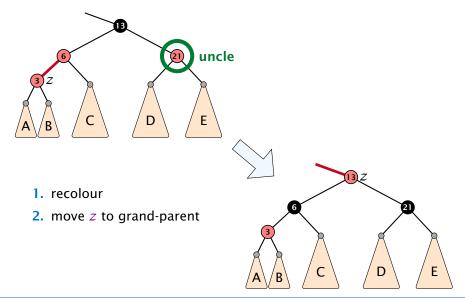


7.2 Red Black Trees



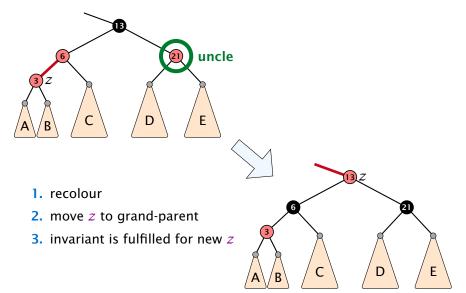


7.2 Red Black Trees



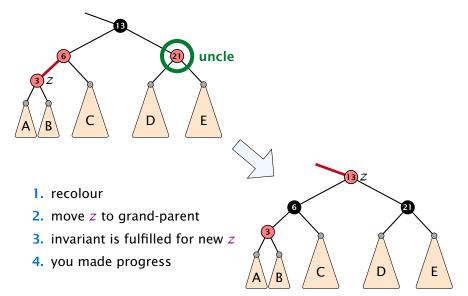


7.2 Red Black Trees



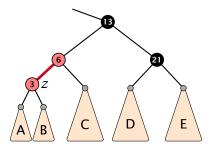


7.2 Red Black Trees



7.2 Red Black Trees

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

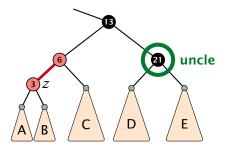






7.2 Red Black Trees

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

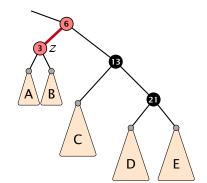


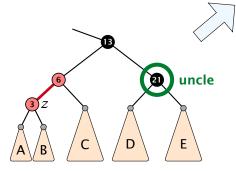




7.2 Red Black Trees

- 1. rotate around grandparent
- re-colour to ensure that black height property holds
  you have a red black tree

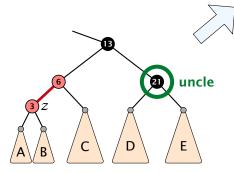


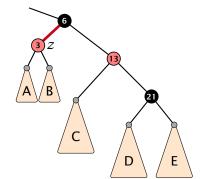




7.2 Red Black Trees

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

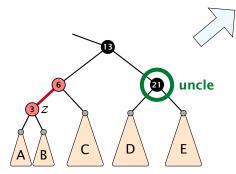


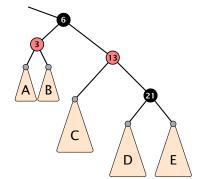




7.2 Red Black Trees

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree







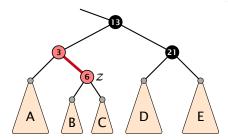
7.2 Red Black Trees

- 1. rotate around parent
- 2. move *z* downwards
- 3. you have Case 2b.





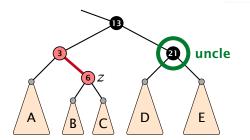






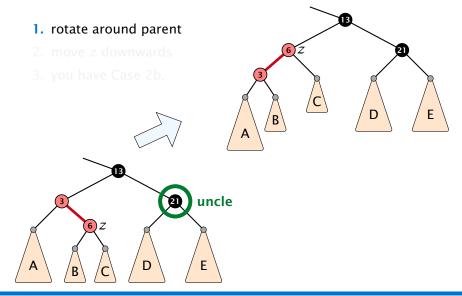
7.2 Red Black Trees

- 1. rotate around parent
- 2. move z downwards
- 3. you have Case 2b.



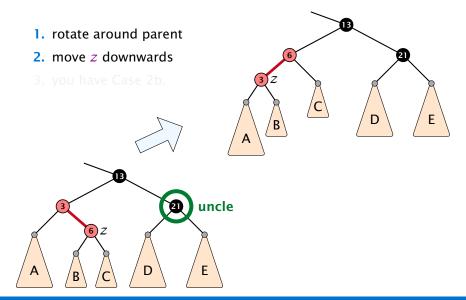


7.2 Red Black Trees



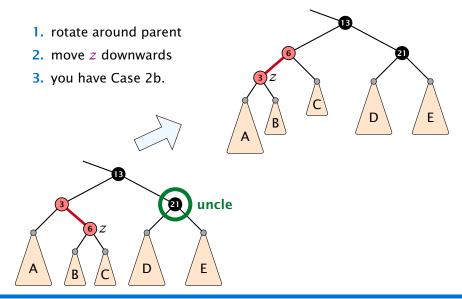


7.2 Red Black Trees





7.2 Red Black Trees





7.2 Red Black Trees

#### **Running time:**

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most  $O(\log n)$  times and every other case at most once, we get a red-black tree. Hence  $O(\log n)$ re-colorings and at most 2 rotations.



7.2 Red Black Trees

#### **Running time:**

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree

Case  $2b \rightarrow red-black$  tree

Performing Case 1 at most  $O(\log n)$  times and every other case at most once, we get a red-black tree. Hence  $O(\log n)$ re-colorings and at most 2 rotations.



7.2 Red Black Trees

#### **Running time:**

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most  $O(\log n)$  times and every other case at most once, we get a red-black tree. Hence  $O(\log n)$ re-colorings and at most 2 rotations.



7.2 Red Black Trees

#### **Running time:**

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most  $O(\log n)$  times and every other case at most once, we get a red-black tree. Hence  $O(\log n)$ re-colorings and at most 2 rotations.



First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of sowere red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of a tota descendant leaf of a changes the number of black nodes. Black height property might be violated.



7.2 Red Black Trees

#### First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of sowere red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of site a descendant leaf of s changes the number of black nodes. Black height property might be violated.



7.2 Red Black Trees

First do a standard delete.

#### If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

Parent and child of a were reader were reader to the root, the



¥ }



7.2 Red Black Trees

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.



7.2 Red Black Trees

2

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.



7.2 Red Black Trees

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.



7.2 Red Black Trees

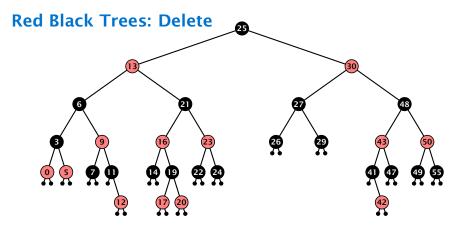
First do a standard delete.

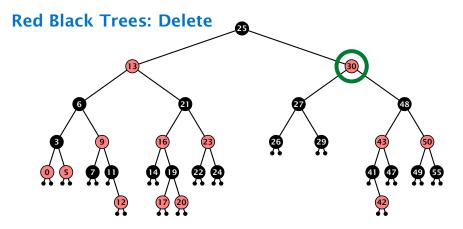
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.



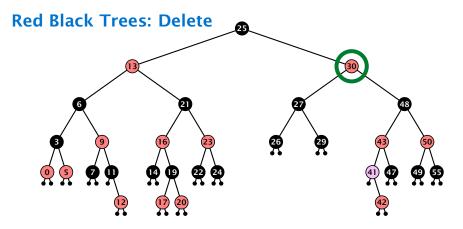




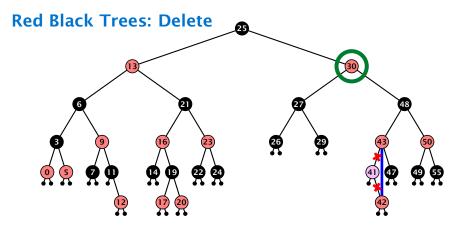
#### Case 3:

Element has two children

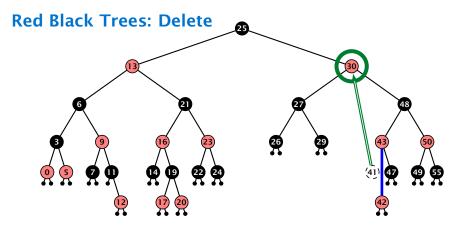
- do normal delete
- when replacing content by content of successor, don't change color of node



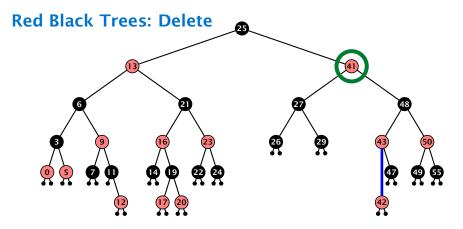
- do normal delete
- when replacing content by content of successor, don't change color of node



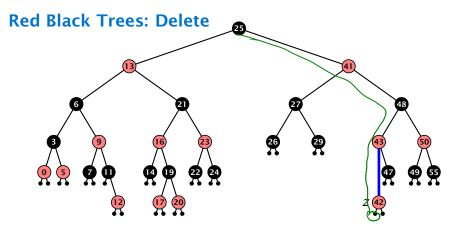
- do normal delete
- when replacing content by content of successor, don't change color of node



- do normal delete
- when replacing content by content of successor, don't change color of node

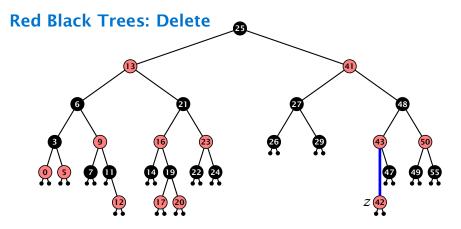


- do normal delete
- when replacing content by content of successor, don't change color of node



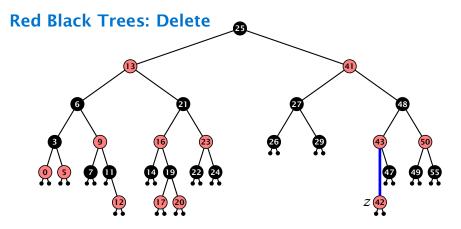
#### Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



#### Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



#### Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

#### **Red Black Trees: Delete**

#### Invariant of the fix-up algorithm

the node z is black

if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

**Goal:** make rotations in such a way that you at some point can remove the fake black unit from the edge.



7.2 Red Black Trees

#### **Red Black Trees: Delete**

#### Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

**Goal:** make rotations in such a way that you at some point can remove the fake black unit from the edge.



7.2 Red Black Trees

#### **Red Black Trees: Delete**

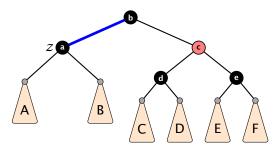
#### Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

**Goal:** make rotations in such a way that you at some point can remove the fake black unit from the edge.



7.2 Red Black Trees

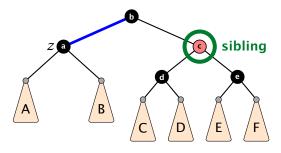


- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- **3.** the new sibling is black (and parent of z is red)
- 4. Case 2 (special),

or Case 3, or Case 4





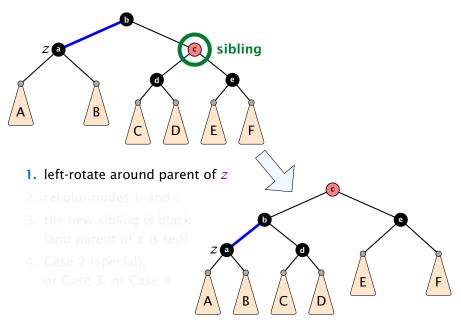


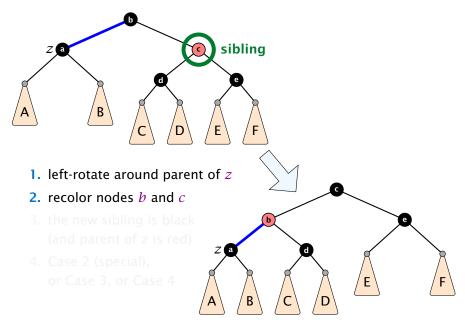
- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- **3.** the new sibling is black (and parent of z is red)
- 4. Case 2 (special),

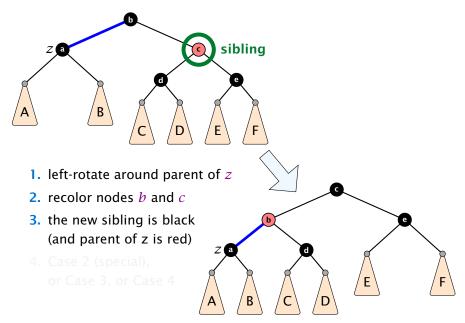
or Case 3, or Case 4

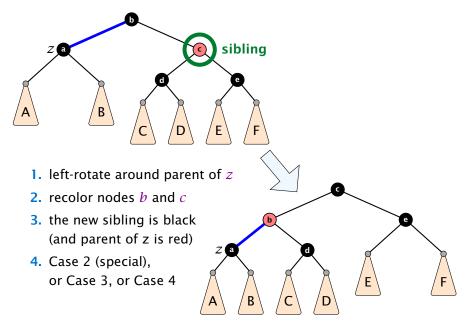


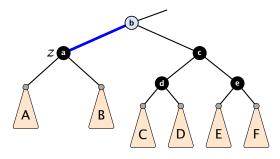




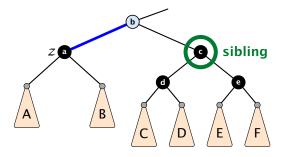




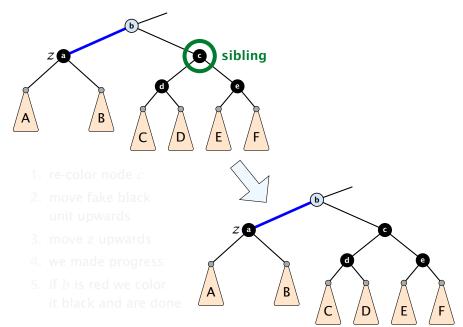


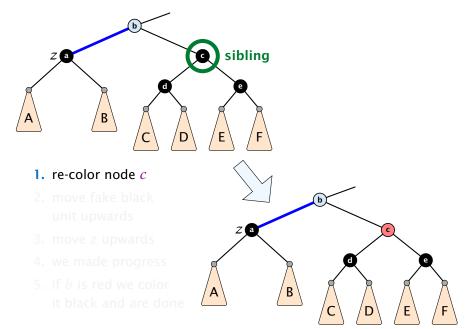


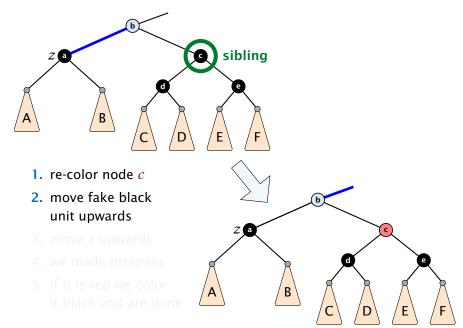
- 1. re-color node c
- move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

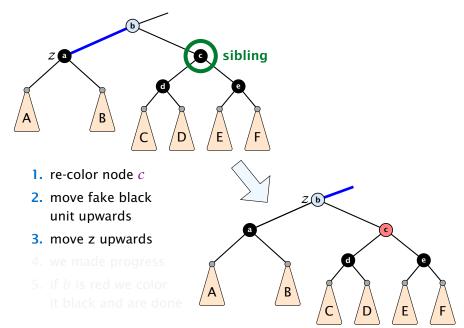


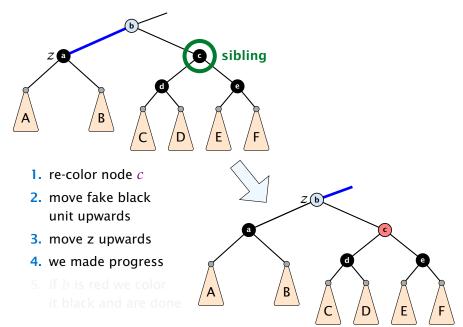
- 1. re-color node c
- move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

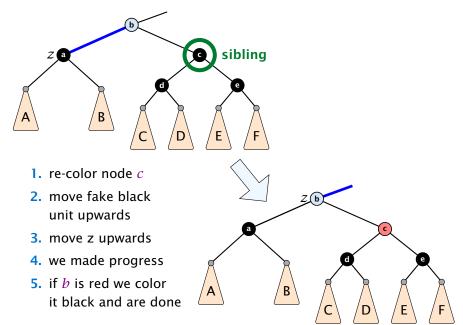




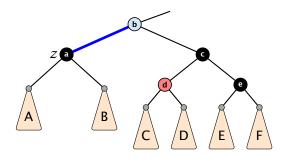




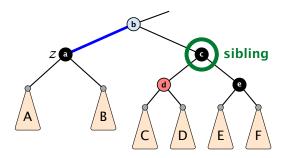




- 1. do a right-rotation at sibling
- 2. recolor c and d
- **3.** new sibling is black with red right child (Case 4)

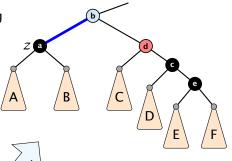


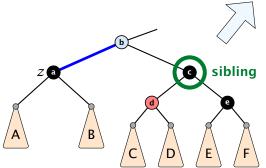
- 1. do a right-rotation at sibling
- 2. recolor c and d
- **3.** new sibling is black with red right child (Case 4)



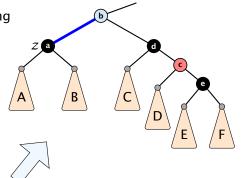


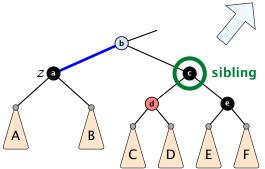
- recolor c and d
- **3.** new sibling is black with red right child (Case 4)



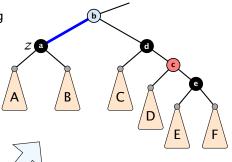


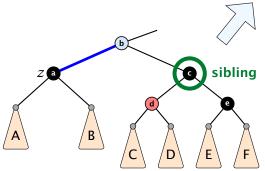
- 1. do a right-rotation at sibling
- **2.** recolor *c* and *d*
- **3.** new sibling is black with red right child (Case 4)

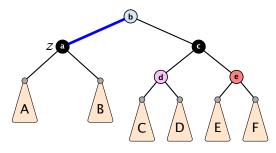




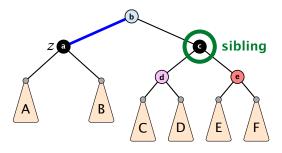
- 1. do a right-rotation at sibling
- **2.** recolor *c* and *d*
- 3. new sibling is black with red right child (Case 4)





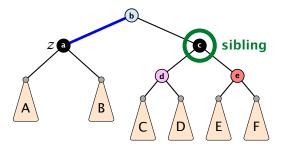


- 1. left-rotate around b
- remove the fake black unit
- 3. recolor nodes b, c, and e
- you have a valid red black tree

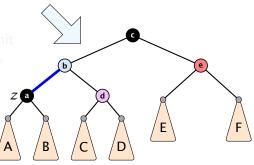


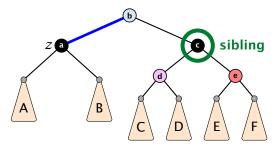
- **1.** left-rotate around *b*
- remove the fake black unit
- 3. recolor nodes b, c, and e
- you have a valid red black tree



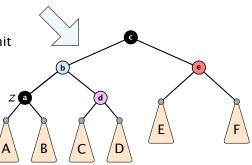


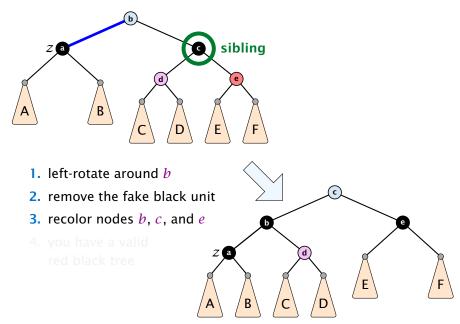
- 1. left-rotate around *b*
- 2. remove the fake black unit
- **3.** recolor nodes *b*, *c*, and *e*
- 4. you have a valid red black tree

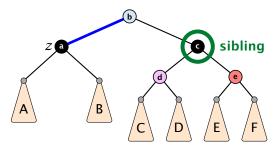




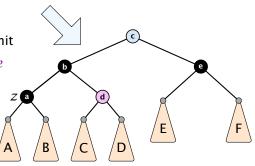
 left-rotate around *b* remove the fake black unit
recolor nodes *b*, *c*, and *a* you have a valid red black tree







- 1. left-rotate around *b*
- 2. remove the fake black unit
- **3.** recolor nodes *b*, *c*, and *e*
- you have a valid red black tree



- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree
  - Case 1  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- **Case 3**  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- Case 4 → red black tree

Performing Case 2 at most  $O(\log n)$  times and every other step at most once, we get a red black tree. Hence,  $O(\log n)$ re-colorings and at most 3 rotations.



7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1  $\rightarrow$  Case 2 (special)  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 3  $\rightarrow$  Case 4  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- **Case 3**  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- Case 4 → red black tree

Performing Case 2 at most  $O(\log n)$  times and every other step at most once, we get a red black tree. Hence,  $O(\log n)$ re-colorings and at most 3 rotations.



7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1  $\rightarrow$  Case 2 (special)  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 3  $\rightarrow$  Case 4  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- Case  $3 \rightarrow$  Case  $4 \rightarrow$  red black tree

Case 4 → red black tree

Performing Case 2 at most  $O(\log n)$  times and every other step at most once, we get a red black tree. Hence,  $O(\log n)$ re-colorings and at most 3 rotations.



7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
  - Case 1  $\rightarrow$  Case 3  $\rightarrow$  Case 4  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- Case  $3 \rightarrow$  Case  $4 \rightarrow$  red black tree
- Case 4 → red black tree

Performing Case 2 at most  $O(\log n)$  times and every other step at most once, we get a red black tree. Hence,  $O(\log n)$ re-colorings and at most 3 rotations.



7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- ► Case 1  $\rightarrow$  Case 2 (special)  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 3  $\rightarrow$  Case 4  $\rightarrow$  red black tree
  - Case 1  $\rightarrow$  Case 4  $\rightarrow$  red black tree
- Case  $3 \rightarrow$  Case  $4 \rightarrow$  red black tree
- Case 4 → red black tree

Performing Case 2 at most  $O(\log n)$  times and every other step at most once, we get a red black tree. Hence,  $O(\log n)$ re-colorings and at most 3 rotations.

