8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty (): Returns true if the data-structure is empty and false otherwise.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty (): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

- S. merge $\left(S^{\prime}\right): S:=S \cup S^{\prime} ; S^{\prime}:=\varnothing$.

8 Priority Queues

An addressable Priority Queue also supports:

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert (x) : Adds element x to the data-structure, and returns a handle to the object for future reference.

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert (x) : Adds element x to the data-structure, and returns a handle to the object for future reference.
- S. delete (h): Deletes element specified through handle h.

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert (x) : Adds element x to the data-structure, and returns a handle to the object for future reference.
- S. delete(h): Deletes element specified through handle h.
- S. decrease-key $(\boldsymbol{h}, \boldsymbol{k})$: Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 14 Shortest-Path \((G=(V, E, d), s \in V)\)
    1: Input: weighted graph \(G=(V, E, d)\); start vertex \(s\);
    2: Output: key-field of every node contains distance from \(s\);
    3: S.build(); // build empty priority queue
    4: for all \(v \in V \backslash\{s\}\) do
    5: \(\quad v\). key \(\leftarrow \infty\);
    6: \(\quad h_{v} \leftarrow S . \operatorname{insert}(v)\);
    \(s\). key \(\leftarrow 0 ; S\).insert \((s)\);
    while \(S\).is-empty ( ) = false do
    \(\rightarrow v \leftarrow S\).delete-min () ;
    for all \(x \in V\) s.t. \((v, x) \in E\) do
        if \(x\). key \(>v\). key \(+d(v, x)\) then
    \(S\). decrease-key \(\left(h_{x}, v . \operatorname{key}+d(v, x)\right) ; \leftarrow\)
    \(x\). key \(\leftarrow v\). key \(+d(v, x)\);
```


Prim's Minimum Spanning Tree Algorithm

```
Algorithm \(15 \operatorname{Prim-MST}(G=(V, E, d), s \in V)\)
    1: Input: weighted graph \(G=(V, E, d)\); start vertex \(s\);
    2: Output: pred-fields encode MST;
    3: S.build(); // build empty priority queue
    4: for all \(v \in V \backslash\{s\}\) do
    5: \(\quad v . k e y \leftarrow \infty\);
    6: \(\quad h_{v} \leftarrow S . \operatorname{insert}(v)\);
    \(s\). key \(\leftarrow 0 ; S\).insert \((s)\);
    while \(S\).is-empty () = false do
        \(v \leftarrow S\).delete-min();
    for all \(x \in V\) s.t. \(\{v, x\} \in E\) do
        if \(x\). key \(>d(v, x)\) then
        \(S\). decrease-key \(\left(h_{x}, d(v, x)\right)\);
        \(x\). key \(\leftarrow d(v, x)\);
        \(x\). pred \(\leftarrow v\);
```


Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- $|V|$ insert() operations
- $|V|$ delete-min() operations
- $|V|$ is-empty() operations
- $|E|$ decrease-key() operations

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- $|V|$ insert() operations
- $|V|$ delete-min() operations
- $|V|$ is-empty() operations
- $|E|$ decrease-key() operations

How good a running time can we obtain?

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap* *
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap* *
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap* *
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|) \log |V|)$.

Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V| \log |V|+|E|)$.

8.1 Binary Heaps

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.

Binary Heaps

Operations:

Binary Heaps

Operations:

- minimum (): return the root-element. Time $\mathcal{O}(1)$.

Binary Heaps

Operations:

- minimum (): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a right edge. go left; go right until you reach a leaf

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a right edge. go left; go right until you reach a leaf
if you hit the root on the way up, go to the rightmost element

8.1 Binary Heaps

Maintain a pointer to the last element x.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x
(last element when an element is inserted) in time $\mathcal{O}(\log n)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

Insert

1. Insert element at successor of x.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree (but not both directions).

Binary Heaps

Operations:

- minimum (): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : insert at successor of x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Binary Heaps

Operations:

- minimum(): Return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : Insert at x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- build $\left(x_{1}, \ldots, x_{n}\right)$: Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

Binary Heaps

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

8.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap *
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Binomial Trees

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.
- Deleting the root of B_{k} gives trees $B_{0}, B_{1}, \ldots, B_{k-1}$.

Binomial Trees

Deleting the root of B_{5} leaves sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees

Deleting the leaf furthest from the root (in B_{5}) leaves a path that connects the roots of sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees $\quad B_{0 i}$ level $0 \quad\binom{0}{0}=1 \quad\binom{k}{0}=1$

The number of nodes on level ℓ in tree B_{k} is therefore

$$
\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}
$$

$$
1331
$$

1464

Binomial Trees

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label b_{k}, \ldots, b_{1} is obtained by setting the least significant 1-bit to 0 .

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label b_{k}, \ldots, b_{1} is obtained by setting the least significant 1-bit to 0 .

The ℓ-th level contains nodes that have $\ell 1$'s in their label.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x, right point to the teft and right sibling of x (if x does ngt have siblings then x. left $=x$. xight $=x$).

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

Binomial Heap

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property
There is at most one tree for every dimension/order. For example the above heap contains trees B_{0}, B_{1}, and B_{4}.

Binomial Heap: Merge

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_{i} 2^{k_{i}}$ must hold. But since the k_{i} are all distinct this means that the k_{i} define the non-zero bit-positions in the binary representation of n.

Binomial Heap

Properties of a heap with n keys:

Binomial Heap

Properties of a heap with n keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous
 to binary addition.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x) :

- Create a new heap S^{\prime} that contains just the element x.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge $\left(S^{\prime}\right)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x) :

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge (S^{\prime}).
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete-min():

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.

8.2 Binomial Heaps

S. delete-min ():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$
- Compute S.merge $\left(S^{\prime}\right)$.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\min }$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$
- Compute S.merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. decrease-key(handle h):

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete(handle h):

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.

8.2 Binomial Heaps

S. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S. delete-min().

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.
Structure is much more relaxed than binomial heaps.

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

8.3 Fibonacci Heaps

The potential function:

- $t(S)$ denotes the number of trees in the heap.
- $m(S)$ denotes the number of marked nodes.
- We use the potential function $\Phi(S)=t(S)+2 m(S)$.

The potential is $\Phi(S)=5+2 \cdot 3=11$.

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use \boldsymbol{c} to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

S. minimum ()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. insert (x)

\rightarrow Create a new tree containing x.

- Insert x into the root-list.
- Update min-pointer, if necessary.

8.3 Fibonacci Heaps

S. insert (x)

\rightarrow Create a new tree containing x.

- Insert x into the root-list.
- Update min-pointer, if necessary.

8.3 Fibonacci Heaps

S. insert (x)
\rightarrow Create a new tree containing x.

- Insert x into the root-list.
- Update min-pointer, if necessary.

Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1 .
- Amortized cost is $c+\mathcal{O}(1)=\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

