
WS 2019/20

Efficient Algorithms
and Data Structures

Harald Räcke

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2019WS/ea/

Winter Term 2019/20

18. Oct. 2019

Ernst Mayr, Harald Räcke 1/117

Part I

Organizational Matters

18. Oct. 2019

Ernst Mayr, Harald Räcke 2/117

Part I

Organizational Matters

� Modul: IN2003

� Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

� ECTS: 8 Credit points

� Lectures:
� 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

� Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

Part I

Organizational Matters

� Modul: IN2003

� Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

� ECTS: 8 Credit points

� Lectures:
� 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

� Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

Part I

Organizational Matters

� Modul: IN2003

� Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

� ECTS: 8 Credit points

� Lectures:
� 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

� Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

Part I

Organizational Matters

� Modul: IN2003

� Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

� ECTS: 8 Credit points

� Lectures:
� 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

� Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

Part I

Organizational Matters

� Modul: IN2003

� Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

� ECTS: 8 Credit points

� Lectures:
� 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

� Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

� Required knowledge:
� IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

� IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

� IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

� IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

� IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

18. Oct. 2019

Ernst Mayr, Harald Räcke 4/117

The Lecturer

� Harald Räcke

� Email: raecke@in.tum.de

� Room: 03.09.044

� Office hours: (by appointment)

18. Oct. 2019

Ernst Mayr, Harald Räcke 5/117

Tutorials

A01 Monday, 12:00–14:00, 00.08.038 (Stotz)

A02 Monday, 12:00–14:00, 00.09.038 (Guan)

A03 Monday, 14:00–16:00, 02.09.023 (Stotz)

B04 Tuesday, 10:00–12:00, 00.08.053 (Czerner)

B05 Tuesday, 14:00–16:00, 00.08.038 (Czerner)

C06 Wednesday, 10:00–12:00, 03.11.018 (Guan)

E07 Friday, 12:00–14:00, 00.13.009 (Stotz)

18. Oct. 2019

Ernst Mayr, Harald Räcke 6/117

Assignment sheets

In order to pass the module you need to pass an exam.

18. Oct. 2019

Ernst Mayr, Harald Räcke 7/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� An assignment sheet is usually made available on Monday

on the module webpage.

� Solutions have to be handed in in the following week before

the lecture on Monday.

� You can hand in your solutions by putting them in the

mailbox "Efficient Algorithms" on the basement floor in the

MI-building.

� Solutions have to be given in English.

� Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be

corrected by this time.

� You should submit solutions in groups of up to 2 people.

18. Oct. 2019

Ernst Mayr, Harald Räcke 8/117

Assessment

Assignment Sheets:

� Submissions must be handwritten by a member of the

group. Please indicate who wrote the submission.

� Don’t forget name and student id number for each group

member.

18. Oct. 2019

Ernst Mayr, Harald Räcke 9/117

Assessment

Assignment Sheets:

� Submissions must be handwritten by a member of the

group. Please indicate who wrote the submission.

� Don’t forget name and student id number for each group

member.

18. Oct. 2019

Ernst Mayr, Harald Räcke 9/117

Assessment

Assignment can be used to improve you grade

Requirements for Bonus

� 50% of the points are achieved on submissions 2–8,

� 50% of the points are achieved on submissions 9–14,

� each group member has written at least 4 solutions.

18. Oct. 2019

Ernst Mayr, Harald Räcke 10/117

1 Contents

� Foundations
� Machine models
� Efficiency measures
� Asymptotic notation
� Recursion

� Higher Data Structures
� Search trees
� Hashing
� Priority queues
� Union/Find data structures

� Cuts/Flows

� Matchings

1 Contents 18. Oct. 2019

Ernst Mayr, Harald Räcke 11/117

1 Contents

� Foundations
� Machine models
� Efficiency measures
� Asymptotic notation
� Recursion

� Higher Data Structures
� Search trees
� Hashing
� Priority queues
� Union/Find data structures

� Cuts/Flows

� Matchings

1 Contents 18. Oct. 2019

Ernst Mayr, Harald Räcke 11/117

1 Contents

� Foundations
� Machine models
� Efficiency measures
� Asymptotic notation
� Recursion

� Higher Data Structures
� Search trees
� Hashing
� Priority queues
� Union/Find data structures

� Cuts/Flows

� Matchings

1 Contents 18. Oct. 2019

Ernst Mayr, Harald Räcke 11/117

1 Contents

� Foundations
� Machine models
� Efficiency measures
� Asymptotic notation
� Recursion

� Higher Data Structures
� Search trees
� Hashing
� Priority queues
� Union/Find data structures

� Cuts/Flows

� Matchings

1 Contents 18. Oct. 2019

Ernst Mayr, Harald Räcke 11/117

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The design and analysis of computer algorithms,

Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,

Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:

Algorithm design: Foundations, analysis, and internet

examples,

John Wiley & Sons, 2002

2 Literatur 18. Oct. 2019

Ernst Mayr, Harald Räcke 12/117

2 Literatur

Ronald L. Graham, Donald E. Knuth, Oren Patashnik:

Concrete Mathematics,

2. Auflage, Addison-Wesley, 1994

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und

die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

Jon Kleinberg, Eva Tardos:

Algorithm Design,

Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental

Algorithms,

3. Auflage, Addison-Wesley, 1997

2 Literatur 18. Oct. 2019

Ernst Mayr, Harald Räcke 13/117

2 Literatur

Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and

Searching,

3. Auflage, Addison-Wesley, 1997

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, 1982

Uwe Schöning:

Algorithmik,

Spektrum Akademischer Verlag, 2001

Steven S. Skiena:

The Algorithm Design Manual,

Springer, 1998

2 Literatur 18. Oct. 2019

Ernst Mayr, Harald Räcke 14/117

Part II

Foundations

18. Oct. 2019

Ernst Mayr, Harald Räcke 15/117

3 Goals

� Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

� Learn how to analyze and judge the efficiency of algorithms.

� Learn how to design efficient algorithms.

3 Goals 18. Oct. 2019

Ernst Mayr, Harald Räcke 16/117

3 Goals

� Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

� Learn how to analyze and judge the efficiency of algorithms.

� Learn how to design efficient algorithms.

3 Goals 18. Oct. 2019

Ernst Mayr, Harald Räcke 16/117

3 Goals

� Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

� Learn how to analyze and judge the efficiency of algorithms.

� Learn how to design efficient algorithms.

3 Goals 18. Oct. 2019

Ernst Mayr, Harald Räcke 16/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

What do you measure?

� Memory requirement

� Running time

� Number of comparisons

� Number of multiplications

� Number of hard-disc accesses

� Program size

� Power consumption

� . . .

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 17/117

4 Modelling Issues

How do you measure?

� Implementing and testing on representative inputs
� How do you choose your inputs?
� May be very time-consuming.
� Very reliable results if done correctly.
� Results only hold for a specific machine and for a specific

set of inputs.

� Theoretical analysis in a specific model of computation.
� Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
� Typically focuses on the worst case.
� Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the
worst case”.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 18/117

4 Modelling Issues

How do you measure?

� Implementing and testing on representative inputs
� How do you choose your inputs?
� May be very time-consuming.
� Very reliable results if done correctly.
� Results only hold for a specific machine and for a specific

set of inputs.

� Theoretical analysis in a specific model of computation.
� Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
� Typically focuses on the worst case.
� Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the
worst case”.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 18/117

4 Modelling Issues

How do you measure?

� Implementing and testing on representative inputs
� How do you choose your inputs?
� May be very time-consuming.
� Very reliable results if done correctly.
� Results only hold for a specific machine and for a specific

set of inputs.

� Theoretical analysis in a specific model of computation.
� Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
� Typically focuses on the worst case.
� Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the
worst case”.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 18/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

� the size of the input (number of bits)

� the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

� the size of the input (number of bits)

� the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

� the size of the input (number of bits)

� the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

� the size of the input (number of bits)

� the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

� the size of the input (number of bits)

� the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 19/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 20/117

Turing Machine
� Very simple model of computation.

� Only the “current” memory location can be altered.

� Very good model for discussing computabiliy, or polynomial

vs. exponential time.

� Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

�⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 21/117

Turing Machine
� Very simple model of computation.

� Only the “current” memory location can be altered.

� Very good model for discussing computabiliy, or polynomial

vs. exponential time.

� Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

�⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 21/117

Turing Machine
� Very simple model of computation.

� Only the “current” memory location can be altered.

� Very good model for discussing computabiliy, or polynomial

vs. exponential time.

� Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

�⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 21/117

Turing Machine
� Very simple model of computation.

� Only the “current” memory location can be altered.

� Very good model for discussing computabiliy, or polynomial

vs. exponential time.

� Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

�⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 21/117

Turing Machine
� Very simple model of computation.

� Only the “current” memory location can be altered.

� Very good model for discussing computabiliy, or polynomial

vs. exponential time.

� Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

�⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 21/117

Random Access Machine (RAM)

� Input tape and output tape (sequences of zeros and ones;

unbounded length).

� Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
� Registers hold integers.

� Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 22/117

Random Access Machine (RAM)

� Input tape and output tape (sequences of zeros and ones;

unbounded length).

� Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
� Registers hold integers.

� Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 22/117

Random Access Machine (RAM)

� Input tape and output tape (sequences of zeros and ones;

unbounded length).

� Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
� Registers hold integers.

� Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 22/117

Random Access Machine (RAM)

� Input tape and output tape (sequences of zeros and ones;

unbounded length).

� Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
� Registers hold integers.

� Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 22/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� input operations (input tape → R[i])
� READ i

� output operations (R[i]→ output tape)
� WRITE i

� register-register transfers
� R[j] := R[i]
� R[j] := 4

� indirect addressing
� R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

� R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 23/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Random Access Machine (RAM)

Operations

� branching (including loops) based on comparisons
� jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

� jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

� jumpi i
jump to R[i] (indirect jump);

� arithmetic instructions: +, −, ×, /
� R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 24/117

Model of Computation

� uniform cost model

Every operation takes time 1.

� logarithmic cost model
The cost depends on the content of memory cells:
� The time for a step is equal to the largest operand involved;
� The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 25/117

Model of Computation

� uniform cost model

Every operation takes time 1.

� logarithmic cost model
The cost depends on the content of memory cells:
� The time for a step is equal to the largest operand involved;
� The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 25/117

Model of Computation

� uniform cost model

Every operation takes time 1.

� logarithmic cost model
The cost depends on the content of memory cells:
� The time for a step is equal to the largest operand involved;
� The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 25/117

Model of Computation

� uniform cost model

Every operation takes time 1.

� logarithmic cost model
The cost depends on the content of memory cells:
� The time for a step is equal to the largest operand involved;
� The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 25/117

Model of Computation

� uniform cost model

Every operation takes time 1.

� logarithmic cost model
The cost depends on the content of memory cells:
� The time for a step is equal to the largest operand involved;
� The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 25/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

� running time:
� uniform model: n steps
� logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

� space requirement:
� uniform model: O(1)
� logarithmic model: O(2n)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 26/117

There are different types of complexity bounds:

� best-case complexity:

Cbc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

� worst-case complexity:

Cwc(n) := max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
� average case complexity:

Cavg(n) := 1
|In|

�

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
�

x∈In
µ(x) · C(x)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 27/117

There are different types of complexity bounds:

� best-case complexity:

Cbc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

� worst-case complexity:

Cwc(n) := max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
� average case complexity:

Cavg(n) := 1
|In|

�

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
�

x∈In
µ(x) · C(x)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 27/117

There are different types of complexity bounds:

� best-case complexity:

Cbc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

� worst-case complexity:

Cwc(n) := max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
� average case complexity:

Cavg(n) := 1
|In|

�

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
�

x∈In
µ(x) · C(x)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 27/117

There are different types of complexity bounds:

� best-case complexity:

Cbc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

� worst-case complexity:

Cwc(n) := max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
� average case complexity:

Cavg(n) := 1
|In|

�

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
�

x∈In
µ(x) · C(x)

4 Modelling Issues 18. Oct. 2019

Ernst Mayr, Harald Räcke 27/117

