Splay Trees

Disadvantage of balanced search trees:

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster
- only amortized guarantee

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

Splay Trees

find (x)

- search for x according to a search tree
- let \bar{x} be last element on search-path
- $\operatorname{splay}(\bar{x})$

Splay Trees

insert (x)

- search for $x ; \bar{x}$ is last visited element during search (successer or predecessor of x)
- $\operatorname{splay}(\bar{x})$ moves \bar{x} to the root
- insert x as new root

Splay Trees

delete (x)

- search for $x ; \operatorname{splay}(x)$; remove x
- search largest element \bar{x} in A
- $\operatorname{splay}(\bar{x})$ (on subtree A)
- connect root of B as right child of \bar{x}

Move to Root

How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if x is left child do right rotation otw. left rotation

Splay: Zig Case

better option splay(x):

- zig case: if x is child of root do left rotation or right rotation around parent

Splay: Zigzag Case

better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)

Double Rotations

Splay: Zigzig Case

better option $\operatorname{splay}(x)$:

- zigzig case: if x is leftchild and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

Splay vs. Move to Root

Static Optimality

Suppose we have a sequence of m find-operations. find (x) appears h_{x} times in this sequence.

The cost of a static search tree T is:

$$
\operatorname{cost}(T)=m+\sum_{x} h_{x} \operatorname{depth}_{T}(x)
$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}\left(\operatorname{cost}\left(T_{\min }\right)\right)$, where $T_{\text {min }}$ is an optimal static search tree.

$$
A B D A A B D D E L
$$

$$
\sum_{x}^{T} h_{X} \cdot d e_{p}+h_{T}(x)
$$

011
010

Dynamic Optimality

Let S be a sequence with m find-operations.
Let A be a data-structure based on a search tree:

- the cost for accessing element x is $1+\operatorname{depth}(x)$;
- after accessing x the tree may be re-arranged through rotations;

Conjecture:
A splay tree that only contains elements from S has cost $\mathcal{O}(\operatorname{cost}(A, S))$, for processing S.

Lemma 16

Splay Trees have an amortized running time of $\mathcal{O}(\log n)$ for all operations.

Amortized Analysis

Definition 17

A data structure with operations $\mathrm{op}_{1}(), \ldots, \mathrm{op}_{k}()$ has amortized running times t_{1}, \ldots, t_{k} for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_{i} denote the number of occurences of $\mathrm{op}_{i}()$ within this sequence. Then the actual running time must be at most $\sum_{i} k_{i} \cdot t_{i}(n)$.

Potential Method

Introduce a potential for the data structure.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \underbrace{\Phi\left(D_{0}\right)}$.

$$
=0
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i}
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\geq 0
$$

$$
\begin{aligned}
& \sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i}+\overbrace{\Phi\left(D_{k}\right)-\Phi\left(D_{0}\right)} \\
& =\sum_{i} c_{i}+\sum_{i>0}\left(\phi\left(D_{i}\right)-\phi\left(D_{i-1}\right)\right)
\end{aligned}
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i}+\Phi\left(D_{k}\right)-\Phi\left(D_{0}\right)=\sum_{i=1}^{k} \hat{c}_{i}
$$

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Stack

- S. push ()
- S. pop()
- S. multipop (k) : removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Example: Stack

Stack

- S. push()
- S. pop()
- S. multipop (k) : removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- S.pop(): cost 1 .
- S. multipop $(k):$ cost $\min \{\operatorname{size}, k\}=k$.

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S.push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S. push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

- S. pop(): cost

$$
\hat{C}_{\text {pop }}=C_{\text {pop }}+\Delta \Phi=1-1 \leq 0 .
$$

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S.push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

- S. pop(): cost

$$
\hat{C}_{\mathrm{pop}}=C_{\mathrm{pop}}+\Delta \Phi=1-1 \leq(0) .
$$

- S. multipop (k) : cost

$$
\hat{C}_{\mathrm{mp}}=C_{\mathrm{mp}}+\Delta \Phi=\min \{\text { size }, k\}-\min \{\text { size }, k\} \leq(0) \text {. }
$$

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1 : cost 1 .
- Changing bit from 1 to 0 : cost 1 .
- Increment: cost is $k+1$, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k=1$).

Example: Binary Counter

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

- Changing bit from 1 to 0 :

$$
\hat{C}_{1 \rightarrow 0}=C_{1 \rightarrow 0}+\Delta \Phi=1-1 \leq 0 .
$$

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

- Changing bit from 1 to 0 :

$$
\hat{C}_{1 \rightarrow 0}=C_{1 \rightarrow 0}+\Delta \Phi=1-1 \leq 0 .
$$

- Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k ($1 \rightarrow 0$)-operations, and one $(0 \rightarrow 1)$-operation.

Hence, the amortized cost is $k \hat{C}_{1 \rightarrow 0}+\hat{C}_{0 \rightarrow 1} \leq 2$.

