Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

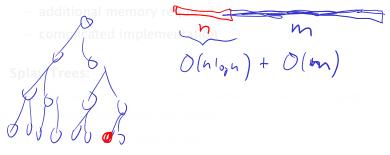
Splay Trees:

- after access, an element is moved to the root; splay(x) repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs



read-operations change the tree

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; splay(x).
 - repeated accesses are laster
- only amortized guarantee
- --- read-operations change the tree

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; $\operatorname{splay}(x)$
 - repeated accesses are faster
- only amortized guarantee
- ---- read-operations change the tree

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

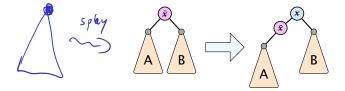
find(x)

- search for x according to a search tree
- let \bar{x} be last element on search-path
- splay(\bar{x})

7.3 Splay Trees

insert(x)

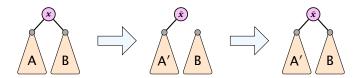
- search for x; x̄ is last visited element during search (successer or predecessor of x)
- splay(\bar{x}) moves \bar{x} to the root
- insert x as new root



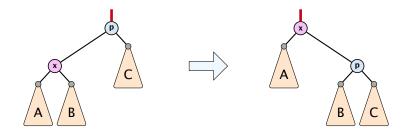
7.3 Splay Trees

delete(x)

- search for x; splay(x); remove x
- search largest element \bar{x} in A
- splay(\bar{x}) (on subtree A)
- connect root of *B* as right child of \bar{x}



Move to Root



How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- ▶ if *x* is left child do right rotation otw. left rotation

7.3 Splay Trees

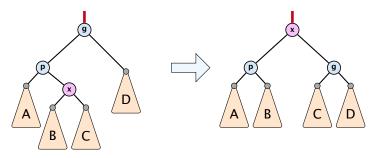
Splay: Zig Case

better option splay(x):

zig case: if x is child of root do left rotation or right rotation around parent

7.3 Splay Trees

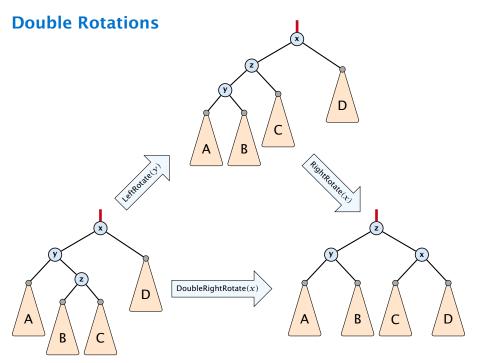
Splay: Zigzag Case



better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)

7.3 Splay Trees



better option splay(x):

D

Splay: Zigzig Case

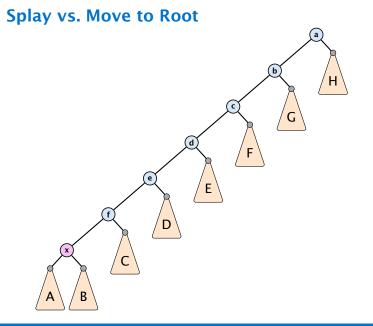
zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)

А

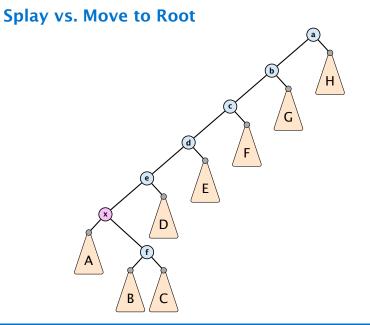
B

 do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

Α



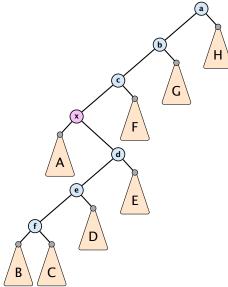
7.3 Splay Trees



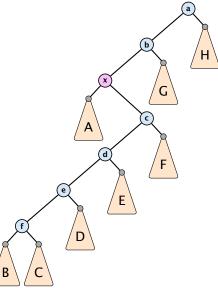
7.3 Splay Trees

Splay vs. Move to Root а b Н G d F x Ε e A D В С

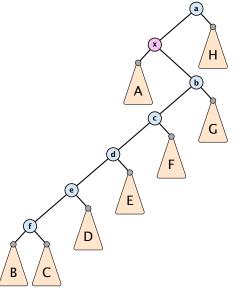
7.3 Splay Trees



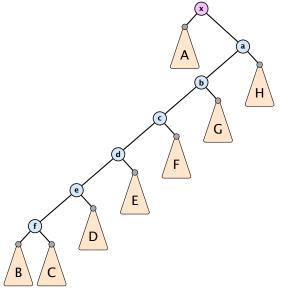
7.3 Splay Trees



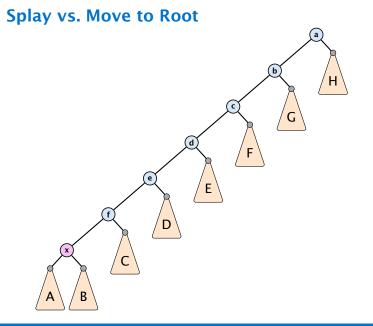
7.3 Splay Trees



7.3 Splay Trees



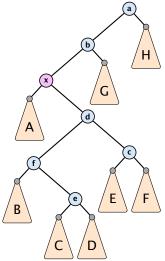
7.3 Splay Trees



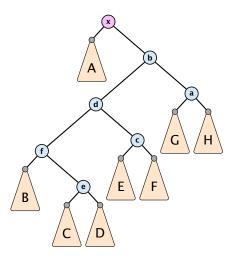
7.3 Splay Trees

Splay vs. Move to Root а b Н G d F х Ε f A В <u>_</u> D

7.3 Splay Trees



7.3 Splay Trees



7.3 Splay Trees

Static Optimality

Suppose we have a sequence of m find-operations. find(x) appears h_x times in this sequence.

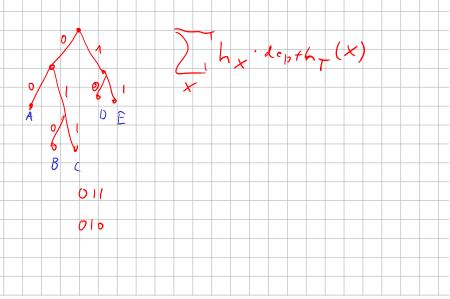
The cost of a static search tree *T* is:

$$cost(T) = m + \sum_{x} h_x \operatorname{depth}_T(x)$$

The total cost for processing the sequence on a splay-tree is $O(cost(T_{min}))$, where T_{min} is an optimal static search tree.

7.3 Splay Trees

ABDAABDDELL



Dynamic Optimality

Let S be a sequence with m find-operations.

Let *A* be a data-structure based on a search tree:

- the cost for accessing element x is 1 + depth(x);
- after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from *S* has cost O(cost(A, S)), for processing *S*.

7.3 Splay Trees

Lemma 16

Splay Trees have an amortized running time of $O(\log n)$ for all operations.

7.3 Splay Trees

Amortized Analysis

Definition 17

A data structure with operations $op_1(), \dots, op_k()$ has amortized running times t_1, \dots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurences of $op_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.

Introduce a potential for the data structure.

7.3 Splay Trees

Introduce a potential for the data structure.

• $\Phi(D_i)$ is the potential after the *i*-th operation.

7.3 Splay Trees

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\widehat{C_i} = \underbrace{C_i}_{\substack{i \in J}} + \Phi(D_i) - \Phi(D_{i-1}) .$$

7.3 Splay Trees

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.

Show that $\Phi(D_i) \ge \Phi(D_0)$.

7.3 Splay Trees

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ .$

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{\kappa} c_i$$

1.

7.3 Splay Trees

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i} + \Phi(D_{k}) - \Phi(D_{0})$$

$$= \sum_{i} C_{i} + \overline{\sum_{i=1}^{k} (\phi(v_{i}) - \phi(v_{i-1}))}$$

20

7.3 Splay Trees

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:ci}$

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

7.3 Splay Trees

Stack

- S. push()
- ► S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- ▶ *S*.push(): cost 1.
- ► *S*.pop(): cost 1.
- S.multipop(k): cost min{size, k} = k.

Stack

- ► S. push()
- ► S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- ► S. pop(): cost 1.
- ► *S*. multipop(*k*): cost min{size, *k*} = *k*.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

▶ S. pop(): cost

Samultipop(k): cost

 $0 = (k_1 \circ \alpha_0) + (k_2 \circ \alpha_0) = (k_1 \circ \alpha_0) + (k_2 \circ \alpha_0) = 0$

7.3 Splay Trees

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

• S.pop(): cost $\hat{C}_{pop} = C_{pop} + \Delta \Phi = 1 - 1 \le 0$

► S. multipop(k): cost

 $\hat{C}_{\rm mp} = C_{\rm mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

7.3 Splay Trees

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\rm pop} = C_{\rm pop} + \Delta \Phi = 1 - 1 \le 0$$
 .

► S. multipop(k): cost $\hat{C}_{mp} = C_{mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \leq 2.$$

• S. pop(): cost

$$\hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \leq 0$$
.

► S. multipop(k): cost $\hat{C}_{mp} = C_{mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

Ernst Mayr, Harald Räcke

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

7.3 Splay Trees

18. Nov. 2019 180/222

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

7.3 Splay Trees

18. Nov. 2019 180/222

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

7.3 Splay Trees

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Let & denotes the number of consecutive ones in the least significant bit-positions. An increment involves k discoperations, and one discoperation.

Hence, the amortized cost is k.Comp. Comp. 2.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
.

• Changing bit from 1 to 0:

$$\hat{C}_{1\rightarrow 0}=C_{1\rightarrow 0}+\Delta\Phi=1-1\leq 0 \ .$$

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\to 0} + \hat{C}_{0\to 1} \le 2$.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

• Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
.

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\to 0} + \hat{C}_{0\to 1} \le 2$.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
.

• Changing bit from 1 to 0:

$$\hat{C}_{1\rightarrow0}=C_{1\rightarrow0}+\Delta\Phi=1-1\leq0$$
 .

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\to 0} + \hat{C}_{0\to 1} \le 2$.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Changing bit from 0 to 1

from 0 to 1:

$$\begin{pmatrix} l & o \\ & \downarrow & (l & l \\ & & \downarrow & \downarrow & (l & l \\ & & & \downarrow & \downarrow & \downarrow \\ & & & 0 \\ \hat{C}_{0 \rightarrow 1} = C_{0 \rightarrow 1} + \Delta \Phi = 1 + 1 \le 2 .$$

1

$$C_{0\to1} - C_{0\to1} + \Delta \Psi - 1 + 1 \le 2$$

• Changing bit from 1 to 0:

$$\hat{C}_{1\rightarrow0}=C_{1\rightarrow0}+\Delta\Phi=1-1\leq0$$
 .

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \le 2$.