
High Probability

Definition 18 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.
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High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).
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Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�]
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Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
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High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
≥ 1−nc ·n−α
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High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
≥ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · ·∧ E�] holds with high probability.
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7.5 Skip Lists

Lemma 19

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).
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7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞
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7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

28
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Backward analysis:
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Backward analysis:
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7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.
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7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.
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Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.

� There are no elements in high lists.
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7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.

� There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
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7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.
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7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that

tell you to go up) in z trials.
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7.5 Skip Lists

Pr[Ez,k]
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7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]
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Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
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k
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7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn
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Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
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2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα
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now choosing β = 6α gives

≤
�

42α
64α

�k
n−α ≤ n−α

for α ≥ 1.
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So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.





7.6 Hashing

Dictionary:

� S. insert(x): Insert an element x.

� S. delete(x): Delete the element pointed to by x.

� S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.
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given key. The goal is to have constant search time.
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7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.
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Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅

k6

k3

∅

∅

k7

∅

k1

This special case is known as Direct Addressing. It is usually

very unrealistic as the universe of keys typically is quite large,

and in particular larger than the available memory.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

Such a hash function h is called a perfect hash function for set S.
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Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that

map to the same memory location (i.e., h(k1) = h(k2)). This is

called a collision.
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Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 20

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].
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Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then
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Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n]
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Proof.
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Pr[Am,n] =
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n− � + 1
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=
m−1�

j=0

�
1− j

n

�
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Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n
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Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n = e−
�m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the �-th element that is

hashed has a probability of n−�+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.
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