Residual Graph

Version A:

The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and u(e') = u(e) - f(e). $\cup (\mathfrak{C})^{=(\mathfrak{d})}$ lle)=5 U(e) = 3

14 Mincost Flow

31. Jan. 2020 483/509

Residual Graph

Version A:

The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to

$$\ell(e') = \ell(e) - f(e) \text{ and } u(e') = u(e) - f(e).$$

$$u_{O} = u(e) - f(e)$$
Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u, v)).

feasi billy

O Capacity constrainty (voilw graph)

o netflows

Suppose I have flow f and Gr

f+g feasible (=) g feasible in Gf

 $\forall e \quad l'(e) \leq g(e) \leq v'(e)$

 $l(e) \in L(e) + S(e) \in U(e \land =) \forall e \ e(e) - f(e) \neq g(e) \in V(e) - f(e)$

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

14 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of *G*.

14 Mincost Flow

 $= \overline{Z}_{i}^{\prime}(f + \beta)(e) \cdot C(e)$

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f* be a min-cost flow.
 We need to show that the residual graph has a feasible circulation with negative cost.

 $f^{*}-f$ has het flow $0 \Rightarrow civilletion$ $cost(f^{*}-f) = cost(f^{*}) - cost(f) \subset D$

take un edge

 $(f^{*}-f)(e) = f^{*}(e) - f(e)$

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f* be a min-cost flow.
 We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

14 Mincost Flow

31. Jan. 2020 487/509

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

Proof.

Suppose that we have a negative cost circulation.

14 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.

14 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

Algorithm 23 CycleCanceling(G = (V, E), c, u, b)1) establish a feasible flow f in G2: while G_f contains negative cycle do3: use Bellman-Ford to find a negative circuit Z4: $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$ 5: augment δ units along Z and update G_f

14 Mincost Flow

- Connect new node s to all nodes with negative b(v)-value.
- Connect nodes with positive b(v)-value to a new node t.
- There exist a feasible flow in the original graph iff in the resulting graph there exists an *s*-*t* flow of value

$$\sum_{v:b(v)<0} (-b(v)) = \sum_{v:b(v)>0} b(v) \ .$$

14 Mincost Flow

14 Mincost Flow

Lemma 87

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \le U$.

- Running time of Bellman-Ford is $\mathcal{O}(mn)$.
- Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval [-mCU, ..., +mCU].

Note that this lemma is weak since it does not allow for edges with infinite capacity.

A general mincost flow problem is of the following form:

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : a(v) \le f(v) \le b(v)$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Lemma 88 (without proof)

A general mincost flow problem can be solved in polynomial time.

