8.2 Binomial Heaps

Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1




Binomial Trees

By By B> B3
IR %g

By

By



Binomial Trees

Properties of Binomial Trees
» By has 2K nodes.



Binomial Trees

Properties of Binomial Trees
» By has 2K nodes.
> By has height k.



Binomial Trees

Properties of Binomial Trees
» By has 2K nodes.
> By has height k.
» The root of By has degree k.



Binomial Trees

Properties of Binomial Trees
» By has 2K nodes.
> By has height k.
» The root of By has degree k.
» By has (’;) nodes on level L.



Binomial Trees

Properties of Binomial Trees

|

>

|
>
>

By has 2% nodes.
By has height k.
The root of By has degree k.
By has (’;) nodes on level L.

Deleting the root of By gives trees By, By, ...



Binomial Trees

B
B>
B3

By

Deleting the root of Bs leaves sub-trees B, B3, B2, B1, and By.

Bo



Binomial Trees

By
B3
B>
By

Bo

Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B>, By, and Bg.



Binomial Trees

Bx
Bk-1

i/é o o

The number of nodes on level £ in tree By is therefore

6=+ (%) -()



Binomial Trees




Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.



Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b, is obtained by setting
the least significant 1-bit to 0.



Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.



8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.

®

parent

left X right
child
< ()
a O<—0O d




8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.

> A child-pointer points to an arbitrary node within the list.

®

parent

left X right
child
()
a O<—0O d




8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
> A child-pointer points to an arbitrary node within the list.

> A parent-pointer points to the parent node.

®

parent

left X right
child
()
a O—0O

o



8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
> A child-pointer points to an arbitrary node within the list.
> A parent-pointer points to the parent node.
>

Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

®

parent

left X right
child

()
® © d



8.2 Binomial Heaps

> Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a node x in constant time if we
are given a pointer to x and a pointer to the root of T.



Binomial Heap




Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.



Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property



Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example
the above heap contains trees By, Bi, and Bj.



Binomial Heap: Merge



Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.



Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bk;, ki < ki1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.



Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bk;, ki < ki1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3'; 2% must hold. But since the k; are all distinct this
means that the k; define the non-zero bit-positions in the binary
representation of n.



Binomial Heap

Properties of a heap with n keys:




Binomial Heap

Properties of a heap with n keys:

» Letn =bib,_4,...,bo denote binary representation of n.




Binomial Heap

Properties of a heap with n keys:
» Letn =bib,_4,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.




Binomial Heap

Properties of a heap with n keys:
» Letn =bib,_4,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.

» Hence, at most [logn] + 1 trees.




Binomial Heap
Properties of a heap with n keys:
» Letn =bib,_4,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
» Hence, at most [logn] + 1 trees.

» The minimum must be contained in one of the roots.




Binomial Heap

Properties of a heap with n keys:
» Letn =bib,_4,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
» Hence, at most [logn] + 1 trees.
» The minimum must be contained in one of the roots.
>

The height of the largest tree is at most [logn|.




Binomial Heap

Properties of a heap with n keys:

>

vV v. v v Y

Letn = bgbi_1,...,bo denote binary representation of n.
The heap contains tree B; iff b; = 1.

Hence, at most [logn]| + 1 trees.

The minimum must be contained in one of the roots.

The height of the largest tree is at most [logn|.

The trees are stored in a single-linked list; ordered by
dimension/size.




Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.



Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.



Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.



Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add
the tree with larger root-value as a child to
the other tree.

(2)
(s ©® @
9 @ ©
@



Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add ©
the tree with larger root-value as a child to @

(57 (&)
the other tree.
©® ©

@8
For more trees the technique is analogous @2
to binary addition.



(YD«
(9 @ 69
@

&




tikzpic- @D

turg FTO &
opti-

mized @

&

con-
tribute
to ex-

ported
PDF]



tIKzpic- ® o . .

turc? FTo ®
opti-

mized @

con-
tribute
to ex-

ported -—
PDF]



tuKkzpic- @ o ¢ . ¢

ture F @ 6
opti-

mized @

con-
tribute
to ex-

ported -—
PDF]



tukzpic- ® o . .

turg FTo ®
opti-

mized @

con-
tribute
to ex-

ported -—
PDF]



tukzpic- ((2)<—)< .‘

ture

. (9 @ (9
opti-
mized @
&
(9 @9
(9 G @
con- (2
tribute
to ex-
ported -—

PDF]



tikzpic- (12)<—(2)< .‘
wure T @ @
opti-
mized @
&
(9 @

(19 G @
con- (2
tribute
to ex-
ported @
PDF] :



tikzpic- (12)—(2)< .‘
wre T @ @
opti-
mized @
&
(9 @

(19 G @
con- (2
tribute
to ex-
ported @
PDF] :



tikzpic- ® o . .

ggg_ T @ @
mized @
%
5% OJNO :
t & 6
rbute oo ©
6

to ex-

(19

@9
ported
PDF] ®



tikzpic- ® o . .

turt? & @
opti-
mized @
&

to ex-
ported
PDF]

D

g 0 o
it mm@w
iribute oo ©
6
?4



tikzpic- ® o . .

turg FTo
opti-
mized @
%

to ex-
ported
PDF]

D

g 0 o
it @@@@
irbute oo ©
6
?4



tiIkzpic- ® o . .

wre F@ 6

opti-

mized @

&

: 19
z (19709 @ ® (39

con- @ 6

tribute

to ex-

ported

PDF] @ 6 @

9 @ @
@



tikzpic- ® o . .

ture T ®

opti-

mized @

&

; 14
; LT @ @ 39

con- @@@

tribute

to ex-

ported

PDF] o 6 @

9 @ @
@



tikzpic- D@

turt? FTO &
opti-
mized @
&

(4¢)

G (19709 @ @ 3G9 :
con- @ 6 @

CECED), @




tikzpic- D@

turt? FTO &
opti-
mized @
&

(a¢)

G (19709 @ @ 3G9 :
con- @ 6 @

CECED), @




8.2 Binomial Heaps

S1.merge(S>):
» Analogous to binary addition.



8.2 Binomial Heaps

S1.merge(S>):
» Analogous to binary addition.

> Time is proportional to the number of trees in both heaps.



8.2 Binomial Heaps

S1.merge(S>):
» Analogous to binary addition.
> Time is proportional to the number of trees in both heaps.
» Time: O(logn).



8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):

> Create a new heap S’ that contains just the element x.



8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.

> Execute S.merge(S’).



8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.
> Execute S.merge(S’).
> Time: O(logn).



8.2 Binomial Heaps

S. minimum():
> Find the minimum key-value among all roots.
> Time: O(logn).



8.2 Binomial Heaps

S. delete-min():



8.2 Binomial Heaps

S. delete-min():

> Find the minimum key-value among all roots.



8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.

» Remove the corresponding tree Ty from the heap.



8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.

> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).



8.2 Binomial Heaps

S. delete-min():

>

>

>

Find the minimum key-value among all roots.
Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
Compute S.merge(S’).



8.2 Binomial Heaps

S. delete-min():

>

>

>

Find the minimum key-value among all roots.

Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)
trees).

Compute S.merge(S’).

Time: O(logn).



8.2 Binomial Heaps

S. decrease-key(handle h):



8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.



8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.

> Bubble the element up in the tree until the heap property is
fulfilled.



8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
> Bubble the element up in the tree until the heap property is

fulfilled.
> Time: O(logn) since the trees have height @(logn).



8.2 Binomial Heaps

S. delete (handle h):



8.2 Binomial Heaps

S. delete (handle h):
> Execute S.decrease-key(h, — ).



8.2 Binomial Heaps

S. delete (handle h):
> Execute S.decrease-key(h, — ).

> Execute S.delete-min().



8.2 Binomial Heaps

S. delete (handle h):
> Execute S.decrease-key(h, — ).
> Execute S.delete-min().

> Time: O(logn).



	Binomial Heaps

