8.2 Binomial Heaps

Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1
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By has 2% nodes.
By has height k.
The root of By has degree k.
By has (’;) nodes on level L.

Deleting the root of By gives trees By, By, ...
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Deleting the root of Bs leaves sub-trees B, B3, B2, B1, and By.
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Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B>, By, and Bg.
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The number of nodes on level £ in tree By is therefore
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Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
> A child-pointer points to an arbitrary node within the list.

> A parent-pointer points to the parent node.

®

parent

left X right
child
()
a O—0O

o



8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
> A child-pointer points to an arbitrary node within the list.
> A parent-pointer points to the parent node.
>

Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).
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8.2 Binomial Heaps

> Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a node x in constant time if we
are given a pointer to x and a pointer to the root of T.
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Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example
the above heap contains trees By, Bi, and Bj.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bk;, ki < ki1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3'; 2% must hold. But since the k; are all distinct this
means that the k; define the non-zero bit-positions in the binary
representation of n.
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Properties of a heap with n keys:
» Letn =bib,_4,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
» Hence, at most [logn] + 1 trees.
» The minimum must be contained in one of the roots.
>

The height of the largest tree is at most [logn|.




Binomial Heap

Properties of a heap with n keys:

>
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Letn = bgbi_1,...,bo denote binary representation of n.
The heap contains tree B; iff b; = 1.

Hence, at most [logn]| + 1 trees.

The minimum must be contained in one of the roots.

The height of the largest tree is at most [logn|.

The trees are stored in a single-linked list; ordered by
dimension/size.
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The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add
the tree with larger root-value as a child to
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add ©
the tree with larger root-value as a child to @

(57 (&)
the other tree.
©® ©

@8
For more trees the technique is analogous @2
to binary addition.
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S1.merge(S>):
» Analogous to binary addition.
> Time is proportional to the number of trees in both heaps.
» Time: O(logn).
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All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.
> Execute S.merge(S’).
> Time: O(logn).
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S. minimum():
> Find the minimum key-value among all roots.
> Time: O(logn).
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S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.

> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
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S. delete-min():

>
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Find the minimum key-value among all roots.
Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
Compute S.merge(S’).
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S. delete-min():

>

>

>

Find the minimum key-value among all roots.

Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)
trees).

Compute S.merge(S’).

Time: O(logn).
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S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
> Bubble the element up in the tree until the heap property is

fulfilled.
> Time: O(logn) since the trees have height @(logn).
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S. delete (handle h):
> Execute S.decrease-key(h, — ).
> Execute S.delete-min().

> Time: O(logn).
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