
Part V

Matchings

6. Feb. 2022

Harald Räcke 161/237



Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum cardinality



16 Bipartite Matching via Flows

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

16 Bipartite Matching via Flows 6. Feb. 2022

Harald Räcke 163/237



17 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 164/237



17 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 164/237



17 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 164/237



17 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 164/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 165/237



17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 166/237



17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 166/237



17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 166/237



17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 166/237



17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 7

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 167/237



17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 7

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 167/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

P

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P′

P

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

P′1

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

P′1

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 168/237



How to find an augmenting path?

Construct an alternating tree.

u

y

even nodes

odd nodes

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 169/237



How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 169/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 170/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 171/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs

17 Augmenting Paths for Matchings 6. Feb. 2022

Harald Räcke 172/237



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

start with an
empty matching



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

free: number of
unmatched nodes in S

r : root of current tree



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as there are
unmatched nodes and
we did not yet try to

grow from all nodes we
continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

r is the new node that
we grow from.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

If r is free start tree
construction



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i′

have parent pointers.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as we did not
augment and there are
still unexamined leaves

continue...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

take next unexamined
leaf



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y ≠ r because we
are in a bipartite graph)



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

do an augmentation...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not

continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

reduce number of free
nodes



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if y is not in the tree yet



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

...put it into the tree



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

add its buddy to the set
of unexamined leaves



18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V
ñ can assume goal is to construct maximum weight perfect

matching

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 174/237



Weighted Bipartite Matching

Theorem 8 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 175/237



18 Weighted Bipartite Matching

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

S



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.

ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.

ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 178/237



Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 178/237



Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 178/237



Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 178/237



Algorithm Outline

Reason:

ñ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other perfect matching M (in G, not necessarily in H(~x))
has ∑

(u,v)∈M
w(u,v) ≤

∑
(u,v)∈M

(xu + xv) =
∑
v
xv .

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 179/237



Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 180/237



Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 180/237



Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 180/237



Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 181/237



Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 181/237



Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 181/237



Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 181/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 182/237



Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 183/237



Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 183/237



Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).

ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 183/237



Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 183/237



Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 184/237



How to find an augmenting path?

Construct an alternating tree.

u

y

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 185/237



How to find an augmenting path?

Construct an alternating tree.

u

y

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 185/237



Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 186/237



Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 186/237



Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 186/237



Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 186/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).

ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 187/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 188/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 188/237



How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 188/237



Flowers and Blossoms

Definition 9

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 189/237



Flowers and Blossoms

Definition 9

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 189/237



Flowers and Blossoms

Definition 9

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 189/237



Flowers and Blossoms

1

2

3

4

5

6

7

8

9

1 2 3 4 5

6

7

8

9

10

11

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 190/237



Flowers and Blossoms

Properties:

1. A stem spans 2`+ 1 nodes and contains ` matched edges for

some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 191/237



Flowers and Blossoms

Properties:

1. A stem spans 2`+ 1 nodes and contains ` matched edges for

some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 191/237



Flowers and Blossoms

Properties:

1. A stem spans 2`+ 1 nodes and contains ` matched edges for

some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 191/237



Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 192/237



Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 192/237



Flowers and Blossoms

1 2 3 4 5

6

7

8

9

10

11

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 193/237



Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 195/237



Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 195/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 196/237



Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 10

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 197/237



Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 10

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 197/237



Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ℓ q

P1

P3

r i w

k ℓ q

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 198/237



Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ℓ q

P1

P3

r i w

k ℓ q

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 198/237



Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ℓ q

P1

P3

r i w

k ℓ q

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 198/237



Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ℓ q

P1

P3

r i w

k ℓ q

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 198/237



Correctness

ñ After the expansion ` must be incident to some node in the

blossom. Let this node be k.

ñ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

ñ P1 ◦ (i,w) ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

ñ If k = w then P1 ◦ (i,w) ◦ (w, `) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 199/237



Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .

P3
b ℓ q

P3

w

k ℓ q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 200/237



Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ℓ q

P3

w

k ℓ q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 200/237



Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ℓ q

P3

w

k ℓ q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 200/237



Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ℓ q

P3

w

k ℓ q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 200/237



Correctness

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r ) to q w.r.t. M′.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 201/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 202/237



Correctness

Illustration for Case 1:

r

i

j q

b j q

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 203/237



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Search for an augmenting path
starting at r .



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

A(i) contains neighbours of node i.

We create a copy Ā(i) so that we later
can shrink blossoms.



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

found is just a Boolean that allows
to abort the search process...



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

In the beginning no node is in the tree.



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Put the root in the tree.

list could also be a set or a stack.



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

As long as there are nodes with
unexamined neighbours...



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

...examine the next one



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

If you found augmenting path
abort and start from next root.



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

Examine the neighbours of a node i



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

For all neighbours j do...



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

You have found a blossom...



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

You have found a free node which
gives you an augmenting path.



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

If you find a matched node that is not
in the tree you grow...



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

mate(j) is a new node from
which you can grow further.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Contract blossom identified by
nodes i and j



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Get all nodes of the blossom.

Time: O(m)



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Identify all neighbours of b.

Time: O(m) (how?)



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

b will be an even node, and it has
unexamined neighbours.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Every node that was adjacent to a node
in B is now adjacent to b



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Only for making a blossom
expansion easier.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 207/237

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).

ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 208/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

1

2

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

1

2

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 209/237



A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)
1: M ← ∅
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = ∅
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 210/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.

ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.

ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.

ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.

ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 211/237



Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).

ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 13

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 212/237



Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.

ñ Let P be an augmenting path in M′.

Lemma 13

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 212/237



Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 13

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 212/237



Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 13

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 212/237



Analysis Hopcroft-Karp

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 213/237



Analysis Hopcroft-Karp

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 213/237



Analysis Hopcroft-Karp

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 213/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.

ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.

ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 214/237



Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains |M∗|− |M|
vertex-disjoint augmenting paths. Each of these paths contains at

least ` + 1 vertices. Hence, there can be at most |V |
`+1 of them.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 215/237



Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains |M∗|− |M|
vertex-disjoint augmenting paths. Each of these paths contains at

least ` + 1 vertices. Hence, there can be at most |V |
`+1 of them.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 215/237



Analysis Hopcroft-Karp

Lemma 15

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 216/237



Analysis Hopcroft-Karp

Lemma 15

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 216/237



Analysis Hopcroft-Karp

Lemma 16

One phase of the Hopcroft-Karp algorithm can be implemented in

time O(m).
construct a “level graph” G′:
ñ construct Level 0 that includes all free vertices on left side L
ñ construct Level 1 containing all neighbors of Level 0

ñ construct Level 2 containing matching neighbors of Level 1

ñ construct Level 3 containing all neighbors of Level 2

ñ . . .

ñ stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 217/237



Analysis Hopcroft-Karp

ñ a shortest augmenting path must go from Level 0 to the last

layer constructed

ñ it can only use edges between layers

ñ construct a maximal set of vertex disjoint augmenting path

connecting the layers

ñ for this, go forward until you either reach a free vertex or you

reach a “dead end” v
ñ if you reach a free vertex delete the augmenting path and all

incident edges from the graph

ñ if you reach a dead end backtrack and delete v together with

its incident edges

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 218/237



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis Hopcroft-Karp

s



Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)
ñ a search (successful or unsuccessful) takes time O(n)
ñ a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn2).

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 220/237



Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
ñ an edge/vertex is traversed at most twice

need at most O(√n) phases

ñ after
√
n phases there is a cut of size at most

√
n in the

residual graph

ñ hence at most
√
n additional augmentations required

Time: O(m√n).

20 The Hopcroft-Karp Algorithm 6. Feb. 2022

Harald Räcke 221/237



21 Gomory Hu Trees

Given an undirected, weighted graph G = (V , E, c) a cut-tree

T = (V , F,w) is a tree with edge-set F and capacities w that

fulfills the following properties.

1. Equivalent Flow Tree: For any pair of vertices s, t ∈ V ,

f(s, t) in G is equal to fT (s, t).

2. Cut Property: A minimum s-t cut in T is also a minimum

cut in G.

Here, f(s, t) is the value of a maximum s-t flow in G, and fT (s, t)
is the corresponding value in T .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 222/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 223/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 224/237



Example: Gomory-Hu Construction

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

157

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

157

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

157

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

157

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15
16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15
16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15
16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15
16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

16

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

2

3

1

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

2

3

1

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

19

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

19

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

19

7

2

3

1

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

19

7

2

3

1

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Example: Gomory-Hu Construction

15

1
7

18

1
6

7

19

1
1

8

7

2

31

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 225/237



Analysis

Lemma 17

For nodes s, t, x ∈ V we have f(s, t) ≥min{f(s, x), f (x, t)}

Lemma 18

For nodes s, t, x1, . . . , xk ∈ V we have

f(s, t) ≥min{f(s, x1), f (x1, x2), . . . , f (xk−1, xk), f (xk, t)}

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 226/237



Analysis

Lemma 17

For nodes s, t, x ∈ V we have f(s, t) ≥min{f(s, x), f (x, t)}

Lemma 18

For nodes s, t, x1, . . . , xk ∈ V we have

f(s, t) ≥min{f(s, x1), f (x1, x2), . . . , f (xk−1, xk), f (xk, t)}

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 226/237



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof:

Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅.

Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).

ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).

ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 228/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 229/237



Analysis

Lemma 19 tells us that if we have a graph G = (V , E) and we

contract a subset X ⊂ V that corresponds to some mincut, then

the value of f(s, t) does not change for two nodes s, t ∉ X.

We will show (later) that the connected components that we

contract during a split-operation each correspond to some mincut

and, hence, fH(s, t) = f(s, t), where fH(s, t) is the value of a

minimum s-t mincut in graph H.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 230/237



Analysis

Invariant [existence of representatives]:

For any edge {Si, Sj} in T , there are vertices a ∈ Si and b ∈ Sj
such that w(Si, Sj) = f(a, b) and the cut defined by edge {Si, Sj}
is a minimum a-b cut in G.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 231/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t)

= min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.

ñ Then

fT (s, t)

= min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t)

= min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)}

≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 232/237



Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 233/237



Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 233/237



Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 233/237



Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 233/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 234/237



Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 235/237



Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 235/237



Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 235/237



Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 235/237



Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 235/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 236/237



Analysis

Si

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Si

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Si

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

x

s

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

x

s

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

x s

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237



Analysis

a

b

x s

Sai

Sbi

21 Gomory Hu Trees 6. Feb. 2022

Harald Räcke 237/237


	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm
	Gomory Hu Trees


