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Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum cardinality



16 Bipartite Matching via Flows

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).
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17 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.
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Augmenting Paths in Action
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17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.
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17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 7

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.
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17 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).
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How to find an augmenting path?

Construct an alternating tree.

u

y

even nodes

odd nodes
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How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs
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Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

start with an
empty matching



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

free: number of
unmatched nodes in S

r : root of current tree
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15: else
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17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as there are
unmatched nodes and
we did not yet try to

grow from all nodes we
continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

r is the new node that
we grow from.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

If r is free start tree
construction



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i′

have parent pointers.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as we did not
augment and there are
still unexamined leaves

continue...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

take next unexamined
leaf



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y ≠ r because we
are in a bipartite graph)



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

do an augmentation...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not

continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

reduce number of free
nodes



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if y is not in the tree yet



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

...put it into the tree



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

add its buddy to the set
of unexamined leaves



18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V
ñ can assume goal is to construct maximum weight perfect

matching
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Weighted Bipartite Matching

Theorem 8 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.
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18 Weighted Bipartite Matching
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Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.

ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.

ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 6. Feb. 2022

Harald Räcke 177/237



Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.
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Algorithm Outline

Reason:

ñ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other perfect matching M (in G, not necessarily in H(~x))
has ∑

(u,v)∈M
w(u,v) ≤

∑
(u,v)∈M

(xu + xv) =
∑
v
xv .
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.
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Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.
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How to find an augmenting path?

Construct an alternating tree.

u

y
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Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.
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Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.
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Flowers and Blossoms

Definition 9

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.
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Flowers and Blossoms

1

2

3

4

5

6

7

8

9

1 2 3 4 5

6

7

8

9

10

11
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Flowers and Blossoms

Properties:

1. A stem spans 2`+ 1 nodes and contains ` matched edges for

some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).
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Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.
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Flowers and Blossoms

1 2 3 4 5

6

7

8

9

10

11
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Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 194/237



Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y
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Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices
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Example: Blossom Algorithm
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Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 10

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 197/237



Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 10

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 6. Feb. 2022

Harald Räcke 197/237



Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ℓ q

P1

P3

r i w

k ℓ q
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Correctness

ñ After the expansion ` must be incident to some node in the

blossom. Let this node be k.

ñ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

ñ P1 ◦ (i,w) ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

ñ If k = w then P1 ◦ (i,w) ◦ (w, `) ◦ P3 is an alternating path.
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Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .

P3
b ℓ q

P3

w

k ℓ q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.
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Correctness

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r ) to q w.r.t. M′.
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Correctness

Proof.

ñ If P does not contain a node from B there is nothing to prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.
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Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.
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Correctness

Illustration for Case 1:

r

i

j q

b j q
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Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.
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Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Search for an augmenting path
starting at r .
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1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

A(i) contains neighbours of node i.

We create a copy Ā(i) so that we later
can shrink blossoms.
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3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

found is just a Boolean that allows
to abort the search process...
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4: give an even label to r and initialize list ← {r}
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8: if found = true then return

In the beginning no node is in the tree.
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1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Put the root in the tree.

list could also be a set or a stack.
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4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

As long as there are nodes with
unexamined neighbours...
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...examine the next one



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

If you found augmenting path
abort and start from next root.



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

Examine the neighbours of a node i
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11: add mate(j) to list

For all neighbours j do...
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11: add mate(j) to list

You have found a blossom...
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6: found ← true;

7: return

8: if j is matched and unlabeled then
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11: add mate(j) to list

You have found a free node which
gives you an augmenting path.
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7: return
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If you find a matched node that is not
in the tree you grow...



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
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6: found ← true;

7: return
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mate(j) is a new node from
which you can grow further.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Contract blossom identified by
nodes i and j



Algorithm 52 contract(i, j)
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4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
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Get all nodes of the blossom.

Time: O(m)
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Identify all neighbours of b.

Time: O(m) (how?)
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b will be an even node, and it has
unexamined neighbours.
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4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
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Every node that was adjacent to a node
in B is now adjacent to b
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Only for making a blossom
expansion easier.
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Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).



Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction reduces

the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n of

them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .
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Example: Blossom Algorithm
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A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)
1: M ← ∅
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = ∅
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.
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Analysis Hopcroft-Karp

Lemma 12

Given a matching M and a matching M∗ with |M∗| − |M| ≥ 0.

There exist |M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.
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Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).

ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 13

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.
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Analysis Hopcroft-Karp

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.
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Analysis Hopcroft-Karp

Lemma 14

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.
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Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains |M∗|− |M|
vertex-disjoint augmenting paths. Each of these paths contains at

least ` + 1 vertices. Hence, there can be at most |V |
`+1 of them.
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Analysis Hopcroft-Karp

Lemma 15

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.
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Analysis Hopcroft-Karp

Lemma 16

One phase of the Hopcroft-Karp algorithm can be implemented in

time O(m).
construct a “level graph” G′:
ñ construct Level 0 that includes all free vertices on left side L
ñ construct Level 1 containing all neighbors of Level 0

ñ construct Level 2 containing matching neighbors of Level 1

ñ construct Level 3 containing all neighbors of Level 2

ñ . . .

ñ stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS
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Analysis Hopcroft-Karp

ñ a shortest augmenting path must go from Level 0 to the last

layer constructed

ñ it can only use edges between layers

ñ construct a maximal set of vertex disjoint augmenting path

connecting the layers

ñ for this, go forward until you either reach a free vertex or you

reach a “dead end” v
ñ if you reach a free vertex delete the augmenting path and all

incident edges from the graph

ñ if you reach a dead end backtrack and delete v together with

its incident edges
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Analysis Hopcroft-Karp
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Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)
ñ a search (successful or unsuccessful) takes time O(n)
ñ a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn2).
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Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
ñ an edge/vertex is traversed at most twice

need at most O(√n) phases

ñ after
√
n phases there is a cut of size at most

√
n in the

residual graph

ñ hence at most
√
n additional augmentations required

Time: O(m√n).
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21 Gomory Hu Trees

Given an undirected, weighted graph G = (V , E, c) a cut-tree

T = (V , F,w) is a tree with edge-set F and capacities w that

fulfills the following properties.

1. Equivalent Flow Tree: For any pair of vertices s, t ∈ V ,

f(s, t) in G is equal to fT (s, t).

2. Cut Property: A minimum s-t cut in T is also a minimum

cut in G.

Here, f(s, t) is the value of a maximum s-t flow in G, and fT (s, t)
is the corresponding value in T .
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Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .
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Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.
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ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.
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Analysis

Lemma 17

For nodes s, t, x ∈ V we have f(s, t) ≥min{f(s, x), f (x, t)}

Lemma 18

For nodes s, t, x1, . . . , xk ∈ V we have

f(s, t) ≥min{f(s, x1), f (x1, x2), . . . , f (xk−1, xk), f (xk, t)}
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Lemma 19

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof:

Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).
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cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S
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Analysis

Lemma 19 tells us that if we have a graph G = (V , E) and we

contract a subset X ⊂ V that corresponds to some mincut, then

the value of f(s, t) does not change for two nodes s, t ∉ X.

We will show (later) that the connected components that we

contract during a split-operation each correspond to some mincut

and, hence, fH(s, t) = f(s, t), where fH(s, t) is the value of a

minimum s-t mincut in graph H.
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Analysis

Invariant [existence of representatives]:

For any edge {Si, Sj} in T , there are vertices a ∈ Si and b ∈ Sj
such that w(Si, Sj) = f(a, b) and the cut defined by edge {Si, Sj}
is a minimum a-b cut in G.
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Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t)

= min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).
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Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.
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Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).
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Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.
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are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 19 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).
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