Part V

Matchings

! !
m Harald Racke 161/237

Matching
» Input: undirected graph G = (V, E).

» M < E is a matching if each node appears in at most one
edge in M.

> Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?
> Generic augmenting path: O(mval(f*)) = O(mn).
> Capacity scaling: ©(m?logC) = O(m?).

> Shortest augmenting path: ©(mn?).

For unit capacity simple graphs shortest augmenting path can be
implemented in time O(m+/n).

‘m 16 Bipartite Matching via Flows
Harald Racke 163/237

17 Augmenting Paths for Matchings
Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

‘m 17 Augmenting Paths for Matchings
Harald Racke 164/237

17 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

‘m 17 Augmenting Paths for Matchings
Harald Racke

164/237

17 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

‘m 17 Augmenting Paths for Matchings
Harald Racke

164/237

17 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 6

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m 17 Augmenting Paths for Matchings
Harald Racke

164/237

Augmenting Paths in Action

@

Gés 6 7)

‘m 17 Augmenting Paths for Matchings
Harald Racke 165/237

Augmenting Paths in Action

@

Gés 6 7)

‘m 17 Augmenting Paths for Matchings
Harald Racke 165/237

Augmenting Paths in Action

@

Gés 6 7)

‘m 17 Augmenting Paths for Matchings
Harald Racke 165/237

Augmenting Paths in Action

@

<4§<<5 6 7)

‘m 17 Augmenting Paths for Matchings
Harald Racke 165/237

Augmenting Paths in Action

<4 XS 7)

m Harald Racke

17 Augmenting Paths for Matchings

165/237

Augmenting Paths in Action

‘m 17 Augmenting Paths for Matchings
Harald Racke 165/237

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

‘m 17 Augmenting Paths for Matchings
Harald Racke 166/237

17 Augmenting Paths for Matchings

Proof.
= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

‘m 17 Augmenting Paths for Matchings
Harald Racke 166/237

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

m 17 Augmenting Paths for Matchings
Harald Racke 166/237

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |[M'| > |M| there is one connected component that is a
path P for which both endpoints are incident to edges from
M'. P is an alternating path.

m 17 Augmenting Paths for Matchings
Harald Racke 166/237

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

‘m 17 Augmenting Paths for Matchings
Harald Racke

167/237

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 7

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M’ = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

I The above theorem allows for an easier implementation of an augment- l
1 ing path algorithm. Once we checked for augmenting paths startmg.
: from u we don’t have to check for such paths in future rounds. ;

m 17 Augmenting Paths for Matchings
Harald Racke

167/237

17 Augmenting Paths for Matchings

Proof

‘m 17 Augmenting Paths for Matchings
Harald Racke 168/237

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P" w.r.t. M’ starting at u.

‘m 17 Augmenting Paths for Matchings
Harald Racke 168/237

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

‘m 17 Augmenting Paths for Matchings
Harald Racke

168/237

17 Augmenting Paths for Matchings
Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.
» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

‘m 17 Augmenting Paths for Matchings
Harald Racke

168/237

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

168/237

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

168/237

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting |
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

168/237

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

‘m 17 Augmenting Paths for Matchings
Harald Racke 168/237

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

‘m 17 Augmenting Paths for Matchings
Harald Racke 168/237

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’

from u to u’ with P;. §
> P; o P is augmenting path in M (#).

‘m 17 Augmenting Paths for Matchings
Harald Racke 168/237

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

s

o4
AN

d
N

/\
O 0O 3 0O O O

O O O O O O

even nodes
odd nodes

m Harald Racke

17 Augmenting Paths for Matchings

169/237

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

s

o4
AN

vd
N

/\
O 0O 3 0O O O

» O O O O

O

even nodes
odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path

g
‘e,
.
.
.

®

m Harald Racke

17 Augmenting Paths for Matchings

169/237

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

s

o4
AN

vd
N

/\
O 0O 3 0O O O

o

O
O
O
O
O}
O

even nodes
odd nodes

Case 2:

vy is matched vertex
not in T; then
mate[y] ¢ T

grow the tree

g
‘e,
.
.
.

©o—0

m Harald Racke

17 Augmenting Paths for Matchings

170/237

How to find an augmenting path?

Construct an alternating tree.

()) O | even nodes
N Y
/C> odd nodes
/ Case 3:
u O 4 O O y is already contained
e \ in T as an odd vertex
.\.Q O ignore successor y
=0

Do

0 O
O

m 17 Augmenting Paths for Matchings
Harald Racke 171/237

How to find an augmenting path?

Construct an alternating tree.

/C

even nodes
odd nodes

O

Case 4:
v is already contained
in T as an even vertex

PEON
QO
AR

3 O 0O O

\
*
*
e
‘e
o

g
Q

can’t ignhore y

g
g
g
.

-
L]
,

@ O O O O

does not happen in
bipartite graphs

Do

/\
35

O

m 17 Augmenting Paths for Matchings
Harald Racke 172/237

Algorithm 49 BiMatch (G, match)

1: for x € V do mate[x] < O;
2: v < 0; free — n;
3: while free>1and» <n do

»

¥ —r+1
if mate[r] =0 then

fori=1ton do parent[i'] — 0
Q — @; Q.append(r); aug — false;
while aug = false and Q + @ do
X — Q.dequeue();
for y € Ay do
if mate[y] =0 then
augm(mate, parent,y);
aug - true;
free — free —1;
else
if parent[y] =0 then
parent[y] < x;
Q.enqueue(mate[y]);

graph G = (SU S',E)
S={1,...,n}
S ={1,...,n'}

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

start with an
empty matching

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v — 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

free: number of
unmatched nodes in S

7: root of current tree

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free=1and» <n do as long as there are
4. ry—r+1 unmatched nodes and
5: if mate[r] =0 then we did not yet try to
6 fori=1to n do parent[i'] — 0 grow from all nodes we
7 Q — @; Q.append(r); aug — false; continue
8: while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;
18: Q.enqueue(mate[y]);

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4. ¥ —r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

7 is the new node that
we grow from.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

If v is free start tree
construction

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1to n do parent[i'] < 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i’
have parent pointers.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — 7; Q.append(7); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = falseand Q #+ & do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

as long as we did not

augment and there are

still unexamined leaves
continue...

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

take next unexamined
leaf

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y # r because we
are in a bipartite graph)

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent, y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

do an augmentation...

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug — true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not
continue

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free—1,
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

reduce number of free
nodes

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

if v is not in the tree yet

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17 parent[y] < x;

18: Q.enqueue(mate[y]);

...put it into the tree

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

add its buddy to the set
of unexamined leaves

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
> an edge e = (£,r) has weight w, > 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that |[L| = |R| =n

> assume that there is an edge between every pair of nodes
L, r)evxVv

> can assume goal is to construct maximum weight perfect
matching

m 18 Weighted Bipartite Matching
Harald Racke

174/237

Weighted Bipartite Matching

Theorem 8 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, where T (S) denotes the set
of nodes in R that have a neighbour in S.

‘m 18 Weighted Bipartite Matching
Harald Racke

175/237

18 Weighted Bipartite Matching

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

‘m 18 Weighted Bipartite Matching
Harald Racke 177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

‘m 18 Weighted Bipartite Matching
Harald Racke

177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and

Rs & R N S denote the portion of S inside L and R,
respectively.

m 18 Weighted Bipartite Matching
Harald Racke

177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.
= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

m 18 Weighted Bipartite Matching
Harald Racke 177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rs > [T'(Ls)|.

m 18 Weighted Bipartite Matching
Harald Racke 177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rs > [T'(Ls)|.

» The size of the cutis |L| — |Ls| + |Rs].

m 18 Weighted Bipartite Matching
Harald Racke 177/237

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.
> This gives Rs > [T'(Ls)|.
The size of the cutis |L| — |Ls| + |Rg].
> Using the fact that [T'(Ls)| = Ls gives that this is at least |L].

v

m 18 Weighted Bipartite Matching
Harald Racke 177/237

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, € R
denote the weight of node v.

‘m 18 Weighted Bipartite Matching
Harald Racke 178/237

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.

> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

‘m 18 Weighted Bipartite Matching
Harald Racke 178/237

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.
> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xv.

‘m 18 Weighted Bipartite Matching
Harald Racke 178/237

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.
> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xv.

> Try to compute a perfect matching in the subgraph H(X). If
you are successful you found an optimal matching.

m 18 Weighted Bipartite Matching
Harald Racke 178/237

Algorithm Outline

Reason:
» The weight of your matching M* is

D Wauw = D, (utx) =2 Xy

(u,v)eM* (u,v)eM* v

> Any other perfect matching M (in G, not necessarily in H(x))
has

D Wy < D (Xutxy) =D Xy

(u,v)eM (u,v)eM v

‘m 18 Weighted Bipartite Matching
Harald Racke 179/237

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with

IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

‘m 18 Weighted Bipartite Matching
Harald Racke

180/237

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).
Idea: reweight such that:

> the total weight assigned to nodes decreases

> the weight function still dominates the edge-weights

m 18 Weighted Bipartite Matching
Harald Racke

180/237

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
> the total weight assigned to nodes decreases
> the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

m 18 Weighted Bipartite Matching
Harald Racke

180/237

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the

node-weights in S by —9.

+0

[(S)

m Harald Racke

18 Weighted Bipartite Matching

181/237

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the

node-weights in S by —9.

> Total node-weight decreases.

+0

[(S)

m Harald Racke

18 Weighted Bipartite Matching

181/237

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight.

+0

[(S)

‘m 18 Weighted Bipartite Matching
Harald Racke

181/237

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight. +6|T(S)

> Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R

m 18 Weighted Bipartite Matching
Harald Racke 181/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 182/237

Analysis
How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

‘m 18 Weighted Bipartite Matching
Harald Racke 183/237

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

m 18 Weighted Bipartite Matching
Harald Racke 183/237

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

m 18 Weighted Bipartite Matching
Harald Racke 183/237

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R —-T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

‘m 18 Weighted Bipartite Matching
Harald Racke 183/237

Analysis

> We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

‘m 18 Weighted Bipartite Matching
Harald Racke

184/237

How to find an augmenting path?

Construct an alternating tree.

OO0
O—O
@<O&/CO
S o—0
__LO—O
\OO:\‘OQ

m Harald Racke

18 Weighted Bipartite Matching

185/237

How to find an augmenting path?

Construct an alternating tree.

OO0
O—O

@< O &/ O—0O
S o—0
OO,

k O:\‘C O

m Harald Racke

18 Weighted Bipartite Matching

185/237

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

‘m 18 Weighted Bipartite Matching
Harald Racke 186/237

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

m 18 Weighted Bipartite Matching
Harald Racke 186/237

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

m 18 Weighted Bipartite Matching
Harald Racke 186/237

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

> All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Voddl = IT (Veven)| < [Veven!l, and all odd vertices are
saturated in the current matching.

‘m 18 Weighted Bipartite Matching
Harald Racke 186/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

‘m 18 Weighted Bipartite Matching
Harald Racke 187/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

m 18 Weighted Bipartite Matching
Harald Racke

187/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

m 18 Weighted Bipartite Matching
Harald Racke 187/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.

m 18 Weighted Bipartite Matching
Harald Racke 187/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.

> In total we obtain a running time of O (n?).

m 18 Weighted Bipartite Matching
Harald Racke 187/237

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.
> In total we obtain a running time of O (n?).

» A more careful implementation of the algorithm obtains a
running time of ©(n?).

m 18 Weighted Bipartite Matching
Harald Racke 187/237

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

PN
Q
5

can’t ignore y

o
/\

.0 O O O O

‘m 19 Maximum Matching in General Graphs
Harald Racke 188/237

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

PN
Q
5

can’t ignore y

O O O O

g
ams® =

’ X

‘m 19 Maximum Matching in General Graphs
Harald Racke 188/237

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

O O O O

can’t ignore y

Thecycle w -« y —x - w

is called a blossom.

w is called the base of the
blossom (even nodel!l!).

’ ‘ | X The path u-w is called the
stem of the blossom.

g
ams® =

m 19 Maximum Matching in General Graphs
Harald Racke 188/237

Flowers and Blossoms

Definition 9
A flower in a graph G = (V,E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

‘m 19 Maximum Matching in General Graphs
Harald Racke 189/237

Flowers and Blossoms

Definition 9
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node 7 and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

‘m 19 Maximum Matching in General Graphs
Harald Racke 189/237

Flowers and Blossoms

Definition 9
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node 7 and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base of
the blossom.

m 19 Maximum Matching in General Graphs
Harald Racke 189/237

Flowers and Blossoms

‘m 19 Maximum Matching in General Graphs
Harald Racke 190/237

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

‘m 19 Maximum Matching in General Graphs
Harald Racke 191/237

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

‘m 19 Maximum Matching in General Graphs
Harald Racke

191/237

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at r).

m 19 Maximum Matching in General Graphs
Harald Racke 191/237

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

‘m 19 Maximum Matching in General Graphs
Harald Racke 192/237

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

m 19 Maximum Matching in General Graphs
Harald Racke 192/237

Flowers and Blossoms

(O=——(e>—19

O—0—W

‘m 19 Maximum Matching in General Graphs
Harald Racke 193/237

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

‘m 19 Maximum Matching in General Graphs
Harald Racke 194/237

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

> Delete all vertices in B (and its incident edges) from G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 194/237

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

> Delete all vertices in B (and its incident edges) from G.

> Add a new (pseudo-)vertex b. The new vertex b is connected
to all vertices in V \ B that had at least one edge to a vertex

from B.

m 19 Maximum Matching in General Graphs
Harald Racke 194/237

Shrinking Blossoms

» Edges of T that connect a hode u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Harald Racke 195/237

Shrinking Blossoms

» Edges of T that connect a hode u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Harald Racke 195/237

Example: Blossom Algorithm

(4]

11
(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(4]

l
(1) {
is

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(4]

l
(1) {
is

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(4]

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(4]

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(4]

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(¢}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

¢}

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

m 19 Maximum Matching in General Graphs 6. Feb. 2022
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

choices

different

m Harald Racke

19 Maximum Matching in General Graphs

6. Feb. 2022
196/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 196/237

Correctness

Assume that in G we have a flower w.r.t. matching M. Let v be the
root, B the blossom, and w the base. Let graph G’ = G/B with
pseudonode b. Let M’ be the matching in the contracted graph.

‘m 19 Maximum Matching in General Graphs
Harald Racke 197/237

Correctness

Assume that in G we have a flower w.r.t. matching M. Let v be the
root, B the blossom, and w the base. Let graph G’ = G/B with
pseudonode b. Let M’ be the matching in the contracted graph.

Lemma 10

If G’ contains an augmenting path P’ starting at v (or the
pseudo-node containing v) w.r.t. the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

m 19 Maximum Matching in General Graphs
Harald Racke

197/237

Correctness

Proof.

If P’ does not contain b it is also an augmenting path in G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 198/237

Correctness

Proof.
If P” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

‘m 19 Maximum Matching in General Graphs
Harald Racke 198/237

Correctness

Proof.
If P” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ o () 0 @

‘m 19 Maximum Matching in General Graphs
Harald Racke 198/237

Correctness

Proof.
If P’ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ o () o @

‘m 19 Maximum Matching in General Graphs
Harald Racke 198/237

Correctness

> After the expansion £ must be incident to some node in the
blossom. Let this node be k.

> If k + w there is an alternating path P, from w to k that
ends in a matching edge.

> Ppo (i,w) o Pso (k,¥) o P3is an alternating path.

» If k = w then Py o (i,w) o (w,¥) o P53 is an alternating path.

‘m 19 Maximum Matching in General Graphs
Harald Racke 199/237

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=7r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 200/237

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=7r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 200/237

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w="r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 200/237

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w="r.

» The path o Py o (k,¥) o P5 is an alternating path.

‘m 19 Maximum Matching in General Graphs
Harald Racke 200/237

Correctness

Lemma 11

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing r) to q w.r.t. M.

‘m 19 Maximum Matching in General Graphs
Harald Racke 201/237

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.

‘m 19 Maximum Matching in General Graphs
Harald Racke 202/237

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
> We can assume that and g are the only free nodes in G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 202/237

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
> We can assume that and g are the only free nodes in G.

Case 1: empty stem

‘m 19 Maximum Matching in General Graphs
Harald Racke 202/237

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
> We can assume that and g are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

‘m 19 Maximum Matching in General Graphs
Harald Racke 202/237

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
> We can assume that and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P o (i, j) o P>, for some node j and (i, j) is
unmatched.

‘m 19 Maximum Matching in General Graphs
Harald Racke 202/237

Correctness

Proof.

> If P does not contain a node from B there is nothing to prove.
> We can assume that and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P o (i, j) o P>, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

m 19 Maximum Matching in General Graphs
Harald Racke

202/237

Correctness

lllustration for Case 1:

)))
N N\ N\
O—@—0O
N\ N\

‘m 19 Maximum Matching in General Graphs
Harald Racke 203/237

Correctness

Case 2: non-empty stem

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M/ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M/ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between v and q.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

OBV -

Search for an augmenting path
starting at r.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

DN ® @ H W

A(i) contains neighbours of node i.

We create a copy A(i) so that we later
can shrink blossoms.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o v o wis

found is just a Boolean that allows
to abort the search process...

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o v o~ E N

In the beginning no node is in the tree.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o B W N =

Put the root in the tree.

list could also be a set or a stack.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list # @ do
delete a node i from list
examine(i, found)
if found = true then return

o N B h W =

As long as there are nodes with
unexamined neighbours...

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

O 9 v R W =

...examine the next one

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

U AN

If you found augmenting path
abort and start from next root.

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

Examine the neighbours of a node i

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

For all neighbours j do...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-—1J

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

You have found a blossom...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

You have found a free node which
gives you an augmenting path.

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

If you find a matched node that is not
in the tree you grow...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

mate(j) is a new node from
which you can grow further.

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W N =

Contract blossom identified by
nodes i and j

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of 7 and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W N =

Get all nodes of the blossom.

Time: O(m)

m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W =

Identify all neighbours of b.
Time: O(m) (how?)

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

SUNCANE S -

b will be an even node, and it has
unexamined neighbours.

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o A W =

Every node that was adjacent to a node
in B is now adjacent to b

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

[R

Only for making a blossom
expansion easier.

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W =

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

‘m 19 Maximum Matching in General Graphs
Harald Racke 207/237

Analysis

> A contraction operation can be performed in time O (m).
Note, that any graph created will have at most m edges.

‘m 19 Maximum Matching in General Graphs
Harald Racke 208/237

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

‘m 19 Maximum Matching in General Graphs
Harald Racke

208/237

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

> There are at most 1 contractions as each contraction reduces
the number of vertices.

m 19 Maximum Matching in General Graphs
Harald Racke 208/237

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

> There are at most 1 contractions as each contraction reduces
the number of vertices.

» The expansion can trivially be done in the same time as
needed for all contractions.

m 19 Maximum Matching in General Graphs
Harald Racke 208/237

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

> There are at most 1 contractions as each contraction reduces
the number of vertices.

» The expansion can trivially be done in the same time as
needed for all contractions.

> An augmentation requires time O(n). There are at most n of
them.

m 19 Maximum Matching in General Graphs
Harald Racke 208/237

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

> There are at most 1 contractions as each contraction reduces
the number of vertices.

» The expansion can trivially be done in the same time as
needed for all contractions.

> An augmentation requires time O(n). There are at most n of
them.

» |In total the running time is at most

n-(Omn) +On)) = O(mn?) .

m 19 Maximum Matching in General Graphs
Harald Racke 208/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 209/237

A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

" M—g

2: repeat

3 let P = {P1,..., Py} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5 M~M& (PruU---UPy)

6: until? = o

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

m 20 The Hopcroft-Karp Algorithm
Harald Racke

210/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.
» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.
» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
» The connected components of G are cycles and paths.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |[M| more red edges than
blue edges.

m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

Lemma 12
Given a matching M and a matching M* with |M*| — |[M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |[M| more red edges than
blue edges.

> Hence, there are at least k components that form a path
starting and ending with a red edge. These are augmenting
paths w.r.t. M.

m 20 The Hopcroft-Karp Algorithm
Harald Racke 211/237

Analysis Hopcroft-Karp

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 212/237

Analysis Hopcroft-Karp

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

>» M“Me&(PLU---UPy)=M&P;®---&Py.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 212/237

Analysis Hopcroft-Karp

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).
>» M“Me&(PLU---UPy)=M&P;®---&Py.

> Let P be an augmenting path in M’.

!
20 The Hopcroft-Karp Algorithm
212/237

m Harald Racke

Analysis Hopcroft-Karp

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).
>» M“Me&(PLU---UPy)=M&P;®---&Py.

> Let P be an augmenting path in M’.

Lemma 13
Theset A Mo (M &P)=(P,uU---UPy) &P contains at least

(k +1)¥ edges.

!
20 The Hopcroft-Karp Algorithm
212/237

m Harald Racke

Analysis Hopcroft-Karp

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 213/237

Analysis Hopcroft-Karp

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M'| = |[M| + k + 1.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke

213/237

Analysis Hopcroft-Karp

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M'| = |[M| + k + 1.

» Each of these paths is of length at least .

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke

213/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> |If P does not intersect any of the Pyq,..., Py, this follows from
the maximality of the set {Py,..., Py}.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> |If P does not intersect any of the Pyq,..., Py, this follows from
the maximality of the set {Py,..., Py}.

> Otherwise, at least one edge from P coincides with an edge
from paths {Pi,...,Py}.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> |If P does not intersect any of the Pyq,..., Py, this follows from
the maximality of the set {Py,..., Py}.

> Otherwise, at least one edge from P coincides with an edge
from paths {P;,..., Py}.

» This edge is not contained in A.

m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> |If P does not intersect any of the Pyq,..., Py, this follows from
the maximality of the set {Py,..., Py}.

> Otherwise, at least one edge from P coincides with an edge
from paths {P;,..., Py}.

» This edge is not contained in A.

» Hence, |A| < kf + |P| - 1.

m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

Lemma 14

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> |If P does not intersect any of the Pyq,..., Py, this follows from
the maximality of the set {Py,..., Py}.

> Otherwise, at least one edge from P coincides with an edge
from paths {P;,..., Py}.

» This edge is not contained in A.
» Hence, |A| < kf + |P| - 1.

» The lower bound on |A| gives (k + 1)¥ < |A| < k€ + |P| -1,
and hence |P| = ¢ + 1.

m 20 The Hopcroft-Karp Algorithm
Harald Racke 214/237

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ¢ edges
then the cardinality of the maximum matching is of size at most

v
IM] + 0+1°

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 215/237

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ¢ edges
then the cardinality of the maximum matching is of size at most

VI
IM] + 0+1°

Proof.
The symmetric difference between M and M* contains |[M*| — M|

vertex-disjoint augmenting paths. Each of these paths contains at

least £ + 1 vertices. Hence, there can be at most ll)vl of them.

m 20 The Hopcroft-Karp Algorithm
Harald Racke

215/237

Analysis Hopcroft-Karp

Lemma 15
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 216/237

Analysis Hopcroft-Karp

Lemma 15
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

> After iteration [/|V[] the length of a shortest augmenting
path must be at least [/|V|] +1 = /|V].

» Hence, there can be at most [V|/(/|V]| +1) < /| V]|
additional augmentations.

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke

216/237

Analysis Hopcroft-Karp

Lemma 16
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).

construct a “level graph” G':

» construct Level 0 that includes all free vertices on left side L
construct Level 1 containing all neighbors of Level 0
construct Level 2 containing matching neighbors of Level 1

construct Level 3 containing all neighbors of Level 2

vV v.v. v Y

stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS

m 20 The Hopcroft-Karp Algorithm
Harald Racke 217/237

Analysis Hopcroft-Karp

> a shortest augmenting path must go from Level 0 to the last
layer constructed

> it can only use edges between layers

» construct a maximal set of vertex disjoint augmenting path
connecting the layers

» for this, go forward until you either reach a free vertex or you
reach a “dead end” v

> if you reach a free vertex delete the augmenting path and all
incident edges from the graph

> if you reach a dead end backtrack and delete v together with
its incident edges

m 20 The Hopcroft-Karp Algorithm
Harald Racke 218/237

Analysis Hopcroft-Karp

Q © Q0 P
\/ A/

OO To0oO T O OO0
QLY P AL QL O
AN AN
g & O o v
QY L QD
\ / \ /
o O O

Analysis Hopcroft-Karp

QY Q9 L
\/ A/

OO TOoOO T O O
QPO QL QL
AN AN
g & O 0
QP L K
\ / \
o

Analysis Hopcroft-Karp

QY Q9 L
\/ A/

OO TOoOO T O O
QPO QL QL
AN AN
g & O 0
QP L K
\ / \
o

Analysis Hopcroft-Karp

Analysis Hopcroft-Karp

O\O

Analysis Hopcroft-Karp

Analysis Hopcroft-Karp

Analysis Hopcroft-Karp

O

L >

0
3 IO O

OO QO

O
O

O

[\

O
o 4

O O

O

=
:

O

Analysis Hopcroft-Karp

| OO O+—0
- N _©
L LD
\J\\ N

o—O| |,

O O Q\Q
OA—FO+—+O+—0

O\o Jo—0—20

Analysis Hopcroft-Karp

O
Jo

O QO
O

\
YO 0

f

O
O
O
O

%
f

O

O

7
:

Analysis Hopcroft-Karp

O
Jo

O

Q
\
JO O

O QO
O

O
O

O
@)
D)

4

O
O

Analysis Hopcroft-Karp

O
Jo

O

Q
\
JO O

O QO
O

O
O

O
@)
D)

4

O
O

Analysis Hopcroft-Karp

O O

O

@)

j{o

&
L

O

O
O

Analysis Hopcroft-Karp

O
Q

O

O

O

Analysis Hopcroft-Karp

O
Q
G

O

O

Analysis Hopcroft-Karp

)

O

O

Analysis Hopcroft-Karp

O O O O
A

O
O
C

O

/
|

Analysis Hopcroft-Karp

O

O

Analysis Hopcroft-Karp

O

O

Analysis Hopcroft-Karp

O

O

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is @ (mn)
» a search (successful or unsuccessful) takes time O (n)

> a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn?).

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 220/237

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
> an edge/vertex is traversed at most twice

need at most @ (/n) phases

> after \/n phases there is a cut of size at most /n in the
residual graph

> hence at most /7 additional augmentations required

Time: O(m/n).

‘m 20 The Hopcroft-Karp Algorithm
Harald Racke 221/237

21 Gomory Hu Trees

Given an undirected, weighted graph G = (V,E,c) a cut-tree
T = (V,F,w) is a tree with edge-set F and capacities w that
fulfills the following properties.
1. Equivalent Flow Tree: For any pair of vertices s,t € V,
f(s,t)in G is equal to fr(s,t).
2. Cut Property: A minimum s-t cut in T is also a minimum
cutin G.
Here, f(s,t) is the value of a maximum s-t flow in G, and fr(s,t)
is the corresponding value in T.

m 21 Gomory Hu Trees
Harald Racke 222/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets S1,...,5¢), and a
spanning tree T on the vertex set {S1,...,S5;:}.

‘m 21 Gomory Hu Trees
Harald Racke 223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets S1,...,5¢), and a
spanning tree T on the vertex set {S1,...,S5;:}.

Initially, there exists only the set §1 = V.

‘m 21 Gomory Hu Trees
Harald Racke 223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,S5¢), and a
spanning tree T on the vertex set {S1,...,S:}.

Initially, there exists only the set §1 = V.

Then the algorithm performs n — 1 split-operations:

‘m 21 Gomory Hu Trees
Harald Racke

223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,S5¢), and a
spanning tree T on the vertex set {S1,...,S:}.

Initially, there exists only the set §1 = V.

Then the algorithm performs n — 1 split-operations:

> |In each such split-operation it chooses a set S; with |S;| = 2
and splits this set into two non-empty parts X and Y.

‘m 21 Gomory Hu Trees
Harald Racke

223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,S5¢), and a
spanning tree T on the vertex set {S1,...,S:}.

Initially, there exists only the set §1 = V.

Then the algorithm performs n — 1 split-operations:

> |In each such split-operation it chooses a set S; with |S;| = 2
and splits this set into two non-empty parts X and Y.

> S;is then removed from T and replaced by X and Y.

m 21 Gomory Hu Trees
Harald Racke

223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,S5¢), and a
spanning tree T on the vertex set {S1,...,S:}.

Initially, there exists only the set §1 = V.

Then the algorithm performs n — 1 split-operations:

> |In each such split-operation it chooses a set S; with |S;| = 2
and splits this set into two non-empty parts X and Y.

> S;is then removed from T and replaced by X and Y.

> X and Y are connected by an edge, and the edges that before
the split were incident to S; are attached to either X or Y.

m 21 Gomory Hu Trees
Harald Racke 223/237

Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,S5¢), and a
spanning tree T on the vertex set {S1,...,S:}.

Initially, there exists only the set §1 = V.

Then the algorithm performs n — 1 split-operations:

> |In each such split-operation it chooses a set S; with |S;| = 2
and splits this set into two non-empty parts X and Y.

> S;is then removed from T and replaced by X and Y.

> X and Y are connected by an edge, and the edges that before
the split were incident to S; are attached to either X or Y.

In the end this gives a tree on the vertex set V.

m 21 Gomory Hu Trees
Harald Racke 223/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

‘m 21 Gomory Hu Trees
Harald Racke 224/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

‘m 21 Gomory Hu Trees
Harald Racke 224/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

m 21 Gomory Hu Trees
Harald Racke 224/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the
two sides of this cut.

m 21 Gomory Hu Trees
Harald Racke 224/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the
two sides of this cut.

> Split S; in T into two sets/nodes S{* = S; N A and Sib =S5;NB
and add edge {S%,S?} with capacity fu(a,b).

m 21 Gomory Hu Trees
Harald Racke 224/237

Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

> Split S; in T into two sets/nodes S{* = S; N A and Sib =S5;NB
and add edge {S%,S?} with capacity fu(a,b).

> Replace an edge {S;, Sx} by {S7,Sx} if Sx € A and by
{SY, Sy} if Sy C B.

m 21 Gomory Hu Trees
Harald Racke 224/237

Example: Gomory-Hu Construction

N 2
7
1 el 2 v
6 /(5]< 9 >[@
7 5 7)
9 (&)

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Example: Gomory-Hu Construction

‘m 21 Gomory Hu Trees
Harald Racke 225/237

Analysis

Lemma 17
For nodes s,t,x € V we have f(s,t) > min{f(s,x), f(x,t)}

‘m 21 Gomory Hu Trees
Harald Racke 226/237

Analysis

Lemma 17
For nodes s,t,x € V we have f(s,t) > min{f(s,x), f(x,t)}

Lemma 18
For nodes s,t,x1,...,xx €V we have
S(s,8) =2min{ f(s,x1), f(x1,x2),..., f(Xk-1,XK), f(xk, 1)}

‘m 21 Gomory Hu Trees
Harald Racke 226/237

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X nS + & and
XNn((V\S) +@.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),

and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

We may assume w.l.o.g. s € X.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),

and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

We may assume w.l.o.g. s € X.

First caser € X.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),

and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS + & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.
We may assume w.l.o.g. s € X.
First case r € X.
» cap(X \S) +cap(S\ X) <cap(S) + cap(X).

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),

and let v,w € S. Then there is a minimum v-w-cut T with T C S.
Proof: Let X be a minimum v-w cut with X NS + & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.
We may assume w.l.o.g. s € X.
First case r € X.

» cap(X \S) +cap(S\ X) <cap(S) + cap(X).

> cap(X \S) = cap(S) because X \ S is an 7-s cut.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),

and let v,w € S. Then there is a minimum v-w-cut T with T C S.
Proof: Let X be a minimum v-w cut with X NS + & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.
We may assume w.l.o.g. s € X.
First case r € X.

» cap(X \S) +cap(S\ X) <cap(S) + cap(X).

> cap(X \S) = cap(S) because X \ S is an 7-s cut.

» This gives cap(S \ X) < cap(X).

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS + & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.
We may assume w.l.o.g. s € X.
First case r € X.
» cap(X \S) +cap(S\ X) <cap(S) + cap(X).
> cap(X \S) = cap(S) because X \ S is an 7-s cut.
» This gives cap(S \ X) < cap(X).

Second case r ¢ X.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

We may assume w.l.o.g. s € X.

First case r € X.
» cap(X \S) +cap(S\ X) <cap(S) + cap(X).
> cap(X \S) = cap(S) because X \ S is an 7-s cut.
» This gives cap(S \ X) < cap(X).

Second case r ¢ X.
> cap(X US) +cap(S nX) <cap(S) + cap(X).

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

We may assume w.l.o.g. s € X.

First case r € X.
» cap(X \S) +cap(S\ X) <cap(S) + cap(X).
> cap(X \S) = cap(S) because X \ S is an 7-s cut.
» This gives cap(S \ X) < cap(X).

Second case r ¢ X.
> cap(X US) +cap(S nX) <cap(S) + cap(X).
> cap(X US) = cap(S) because X U S is an -5 cut.

Lemma 19
Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v-w-cut T with T C S.

Proof: Let X be a minimum v-w cut with X NS # & and
XN ((V\S) =+ @. Notethat S\ X and S n X are v-w cuts inside S.

We may assume w.l.o.g. s € X.

First case r € X.
» cap(X \S) +cap(S\ X) <cap(S) + cap(X).
> cap(X \S) = cap(S) because X \ S is an 7-s cut.
» This gives cap(S \ X) < cap(X).

Second case r ¢ X.
> cap(X US) +cap(S nX) <cap(S) + cap(X).
> cap(X US) = cap(S) because X U S is an -5 cut.

» This gives cap(S N X) < cap(X).

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) =< cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) =< cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(S \ X) + cap(X \ S) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 228/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

‘m 21 Gomory Hu Trees
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

A= 0 BN N =

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

cap(X U S) + cap(S n X) < cap(S) + cap(X)

m 21 Gomory Hu Trees 6. Feb. 2022
Harald Racke 229/237

Analysis

Lemma 19 tells us that if we have a graph G = (V,E) and we
contract a subset X C V that corresponds to some mincut, then
the value of f(s,t) does not change for two nodes s,t ¢ X.

We will show (later) that the connected components that we
contract during a split-operation each correspond to some mincut
and, hence, fy(s,t) = f(s,t), where fy(s,t) is the value of a
minimum s-t mincut in graph H.

m 21 Gomory Hu Trees
Harald Racke 230/237

Analysis

Invariant [existence of representatives]:

For any edge {S;,S;} in T, there are verticesa € S;and b € §
such that w(S;,S;) = f(a, b) and the cut defined by edge {S;, S}
is a minimum a-b cut in G.

‘m 21 Gomory Hu Trees
Harald Racke 231/237

Analysis

We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
fxi,xi41) = wix, xi41) forall j.

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis

We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
fxi,xiv1) = w(xi, xi41) forall j.

» Then

S1(s,1)

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
f(xi,xi41) = w(xq,xi41) forall j.
» Then

s, t) = min w(xi, Xi
fT() ie{O,...,k—l}{ (1 1+1)}

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
fxi,xi41) = wix, xi41) forall j.

» Then
s, t) = min w(xi, Xi
fT() €10, k—l}{ (1 1+1)}
= min Xi, Xi
i€i0,..., k—l}{f(i 1+1)}

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
fxi,xi41) = wix, xi41) forall j.

» Then
I S,t = mll’l WX, Xi+
f () i { ----- 1}{ (1 1 1)}
= min Xi, Xi =< S,t .
0k 1}{f(i 1+1)} f()

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
fxi,xi41) = wix, xi41) forall j.

» Then
I S,t = mll’l WX, Xi+
f () i { ----- 1}{ (1 2 1)}
= min Xi, Xi =< S,t .
0k 1}{f(i 1+1)} f()

> Let {x;,x;1} be the edge with minimum weight on the path.

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
> Lets = xo,X1,...,Xk_1,Xk =t be the unique simple path
from s to t in the final tree T. From the invariant we get that
f(xi,xi41) = w(xq,xi41) forall j.
» Then

s, t) = min w(xi, Xi
fT() icl0 kl}{ (1 1+1)}

.....

= min 1}{f(Xi,Xi+1)} < f(s,t) .

> Let {x;,x;1} be the edge with minimum weight on the path.

> Since by the invariant this edge induces an s-t cut with
capacity f(xj,x;.1) we get f(s,t) < f(xj,xj41) = fr(s,1).

‘m 21 Gomory Hu Trees
Harald Racke 232/237

Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).

‘m 21 Gomory Hu Trees
Harald Racke 233/237

Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).

> The edge {xj,x;;1} is a mincut between s and t in T.

‘m 21 Gomory Hu Trees
Harald Racke 233/237

Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).

> The edge {xj,x;;1} is a mincut between s and t in T.

> By invariant, it forms a cut with capacity f(x;,xj1) in G
(which separates s and t).

‘m 21 Gomory Hu Trees
Harald Racke 233/237

Analysis

v

Hence, fr(s,t) = f(s,t) (flow equivalence).

The edge {x;,x;,1} is a mincut between s and t in T.

v

v

By invariant, it forms a cut with capacity f(xj,xj.1) in G
(which separates s and t).

> Since, we can send a flow of value f(x;,x;1) btw. s and t,
this is an s-t mincut (cut property).

‘m 21 Gomory Hu Trees
Harald Racke 233/237

Proof of Invariant

‘m 21 Gomory Hu Trees
Harald Racke 234/237

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

‘m 21 Gomory Hu Trees
Harald Racke 234/237

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it
was true before the operation.

‘m 21 Gomory Hu Trees
Harald Racke 234/237

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it
was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {S;} in T correspond to some
mincuts.

m 21 Gomory Hu Trees
Harald Racke

234/237

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it
was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because of
the invariant all edges leaving {S;} in T correspond to some

mincuts.

Therefore, contracting the connected components does not
change the mincut btw. a and b due to Lemma 19.

m 21 Gomory Hu Trees
Harald Racke 234/237

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it
was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because of
the invariant all edges leaving {S;} in T correspond to some
mincuts.

Therefore, contracting the connected components does not
change the mincut btw. a and b due to Lemma 19.

After the split we have to choose representatives for all edges. For
the new edge {S%,S"} with capacity w(S%,S?) = fi(a,b) we can
simply choose a and b as representatives.

m 21 Gomory Hu Trees
Harald Racke 234/237

Proof of Invariant

‘m 21 Gomory Hu Trees
Harald Racke 235/237

Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

‘m 21 Gomory Hu Trees
Harald Racke 235/237

Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X, S{'} in the new tree (the case when it is replaced
by {X,Sib} is analogous).

m 21 Gomory Hu Trees
Harald Racke 235/237

Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X, S{'} in the new tree (the case when it is replaced
by {X,Sib} is analogous).

If s € S{" we can keep x and s as representatives.

m 21 Gomory Hu Trees
Harald Racke 235/237

Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X, S{'} in the new tree (the case when it is replaced
by {X,Sib} is analogous).

If s € S{" we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to
show that f(x,a) = f(x,s).

m 21 Gomory Hu Trees
Harald Racke 235/237

Proof of Invariant

‘m 21 Gomory Hu Trees
Harald Racke 236/237

Proof of Invariant

Because the invariant was true before the split we know that the
edge {X,S;} induces a cut in G of capacity f(x,s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) < f(x,s).

‘m 21 Gomory Hu Trees
Harald Racke 236/237

Proof of Invariant

Because the invariant was true before the split we know that the
edge {X,S;} induces a cut in G of capacity f(x,s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 19 we know that

f'(x,a) = f(x,a) as x,a ¢ B.

m 21 Gomory Hu Trees
Harald Racke 236/237

Proof of Invariant

Because the invariant was true before the split we know that the
edge {X,S;} induces a cut in G of capacity f(x,s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 19 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) > min{f'(x,vg), f'(vp,a)}.

m 21 Gomory Hu Trees
Harald Racke 236/237

Proof of Invariant

Because the invariant was true before the split we know that the
edge {X,S;} induces a cut in G of capacity f(x,s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 19 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) > min{f'(x,vg), f'(vp,a)}.

Since s € B we have [’ (vp,x) = f(s,x).

m 21 Gomory Hu Trees
Harald Racke 236/237

Proof of Invariant

Because the invariant was true before the split we know that the
edge {X,S;} induces a cut in G of capacity f(x,s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 19 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) > min{f'(x,vg), f'(vp,a)}.
Since s € B we have [’ (vp,x) = f(s,x).

Also, f'(a,vg) = f(a,b) = f(x,s) since the a-b cut that splits S;
into S and S? also separates s and x.

m 21 Gomory Hu Trees
Harald Racke 236/237

Analysis

‘m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

‘m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

e
Hf?
.

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

e
8
.

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

e
Hf?
.

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

e
Hf?
.

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

m 21 Gomory Hu Trees
Harald Racke 237/237

Analysis

m 21 Gomory Hu Trees
Harald Racke 237/237

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm
	Gomory Hu Trees

