
7 Dictionary

Dictionary:

ñ S. insert(x): Insert an element x.

ñ S. delete(x): Delete the element pointed to by x.

ñ S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

6. Feb. 2022

Harald Räcke 16/218

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary

tree. Each tree-node corresponds to an element. All elements in

the left sub-tree of a node v have a smaller key-value than key[v]
and elements in the right sub-tree have a larger-key value. We

assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

6

2 7

1 5 8

1

2

5

6

7

8

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 17/218

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note

that this is a super-set of the dictionary-operations.

ñ T. insert(x)
ñ T. delete(x)
ñ T. search(k)
ñ T. successor(x)
ñ T. predecessor(x)
ñ T.minimum()
ñ T.maximum()

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 18/218

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 19/218

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 20/218

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 21/218

Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is min in
right sub-tree

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 22/218

Algorithm 3 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is lowest
ancestor going
left to reach me

x

y

[t ikzpicture optimized away because it

does not contribute to exported PDF]

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 22/218

Algorithm 3 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

[t ikzpicture optimized away because it

does not contribute to exported PDF]

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This

is the place to insert z.

Algorithm 4 TreeInsert(x, z)
1: if x = null then
2: root[T]← z; parent[z]← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x]← z; parent[z]← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then

10: right[x]← z; parent[z]← x;
11: else TreeInsert(right[x], z);

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 1:

Element does not have any children

ñ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x]← parent[y];
6: if parent[y] = null then
7: root[T]← x
8: else
9: if y = left[parent[y]] then

10: left[parent[y]]← x
11: else
12: right[parent[y]]← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)
parent[x] is correct

fix pointer to x

fix pointer to x

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 25/218

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 26/218

Binary Search Trees (BSTs)

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and
Chapter 12 in [CLRS90].

7.1 Binary Search Trees 6. Feb. 2022

Harald Räcke 27/218

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 27/218

Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 28/218

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most

O(logn).

Definition 3

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 29/218

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 30/218

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 31/218

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 32/218

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 33/218

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red

black properties are maintained.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 34/218

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 35/218

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z
Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 36/218

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]
ñ either both of them are red

(most important case)
ñ or the parent does not exist

(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 37/218

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

Case 1: uncle red

Case 2: uncle black

2a: z right child

2b: z left child

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 38/218

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 39/218

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 40/218

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 41/218

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 42/218

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 43/218

Red Black Trees: Delete
25

13 3041

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children

ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:

ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 46/218

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 51/218

Red-Black Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Red black trees are covered in detail in Chapter 13 of [CLRS90].

7.2 Red Black Trees 6. Feb. 2022

Harald Räcke 52/218

Splay Trees

Disadvantage of balanced search trees:

− worst case; no advantage for easy inputs

− additional memory required

− complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

− only amortized guarantee

− read-operations change the tree

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 52/218

Splay Trees

find(x)
ñ search for x according to a search tree

ñ let x̄ be last element on search-path

ñ splay(x̄)

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 53/218

Splay Trees

insert(x)
ñ search for x; x̄ is last visited element during search

(successer or predecessor of x)

ñ splay(x̄) moves x̄ to the root

ñ insert x as new root

x̄

A B

x̄

x

A
B

The illustration shows the case when x̄ is
the predecessor of x.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 54/218

Splay Trees

delete(x)
ñ search for x; splay(x); remove x
ñ search largest element x̄ in A
ñ splay(x̄) (on subtree A)

ñ connect root of B as right child of x̄

x

A B

x̄

A′ B

x̄

A′ B

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 55/218

Move to Root

x

p

A

B C

x

p

A B

C

How to bring element to root?

ñ one (bad) option: moveToRoot(x)

ñ iteratively do rotation around parent of x until x is root

ñ if x is left child do right rotation otw. left rotation

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 56/218

Splay: Zig Case

x

p

A

B C

x

p

A B

C

better option splay(x):

ñ zig case: if x is child of root do left rotation or right rotation

around parent

Note that moveToRoot(x) does the same.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 57/218

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

better option splay(x):

ñ zigzag case: if x is right child and parent of x is left child (or

x left child parent of x right child)

ñ do double right rotation around grand-parent (resp. double

left rotation)

Note that moveToRoot(x) does the same.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 58/218

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

better option splay(x):

ñ zigzig case: if x is left child and parent of x is left child (or x
right child, parent of x right child)

ñ do right roation around grand-parent followed by right

rotation around parent (resp. left rotations)

This case is different between
moveToRoot(x) and splay(x).

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 60/218

Splay vs. Move to Root
a

b

c

d

e

f

x

A B

C

D

E

F

G

H

Input tree on which splay(x) and
moveToRoot(x) is executed.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 61/218

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B C

D

E

F

G

H

Result after moveToRoot(x).

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 61/218

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B

C D

E F

G H

Result after splay(x).

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 62/218

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears hx times in this sequence.

The cost of a static search tree T is:

cost(T) =m+
∑
x
hx depthT (x)

The total cost for processing the sequence on a splay-tree is

O(cost(Tmin)), where Tmin is an optimal static search tree.

depthT (x) is the number of edges on a
path from the root of T to x.

Theorem given without proof.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 63/218

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

ñ the cost for accessing element x is 1+ depth(x);
ñ after accessing x the tree may be re-arranged through

rotations;

Conjecture:

A splay tree that only contains elements from S has cost

O(cost(A, S)), for processing S.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 64/218

Lemma 5

Splay Trees have an amortized running time of O(logn) for all

operations.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 65/218

Amortized Analysis

Definition 6

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with an

empty data-structure) that operate on at most n elements, and let

ki denote the number of occurences of opi() within this sequence.

Then the actual running time must be at most
∑
i ki · ti(n).

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 66/218

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i=1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 67/218

Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the stack

currently contains less than k items it empties the stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 68/218

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:
ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 69/218

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 70/218

Example: Binary Counter
Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

Splay Trees

potential function for splay trees:

ñ size s(x) = |Tx|
ñ rank r(x) = log2(s(x))
ñ Φ(T) =∑v∈T r(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1

plus the number of rotations.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 72/218

Splay: Zig Case

x

p

A

B C

x

p

A B

C

∆Φ = r ′(x)+ r ′(p)− r(x)− r(p)
= r ′(p)− r(x)
≤ r ′(x)− r(x)

costzig ≤ 1+ 3(r ′(x)− r(x))

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 73/218

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(x)+ r ′(g)− r(x)− r(x)
= r ′(x)+ r ′(g)+ r(x)− 3r ′(x)+ 3r ′(x)− r(x)− 2r(x)

= −2r ′(x)+ r ′(g)+ r(x)+ 3(r ′(x)− r(x))
≤ −2+ 3(r ′(x)− r(x)) ⇒ costzigzig ≤ 3(r ′(x)− r(x))

Last inequality follows
from next slide. Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

1
2

(
r(x)+ r ′(g)− 2r ′(x)

)

= 1
2

(
log(s(x))+ log(s′(g))− 2 log(s′(x))

)

= 1
2

log
(s(x)
s′(x)

)
+ 1

2
log

(s′(g)
s′(x)

)

≤ log
(1

2
s(x)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

The last inequality holds
because log is a concave
function.

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(p)+ r ′(g)− r(x)− r(x)
= r ′(p)+ r ′(g)− 2r ′(x)+ 2r ′(x)− 2r(x)

≤ −2+ 2(r ′(x)− r(x)) ⇒ costzigzag ≤ 3(r ′(x)− r(x))

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 75/218

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

1
2

(
r ′(p)+ r ′(g)− 2r ′(x)

)

= 1
2

(
log(s′(p))+ log(s′(g))− 2 log(s′(x))

)

≤ log
(1

2
s′(p)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 75/218

Amortized cost of the whole splay operation:

≤ 1+ 1+
∑

steps t
3(rt(x)− rt−1(x))

= 2+ 3(r(root)− r0(x))

≤ O(logn)

The first one is added due to the fact that so far for each step
of a splay-operation we have only counted the number of
rotations, but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we
have at most one zig-operation during a splay.

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 76/218

Splay Trees

Bibliography
??????????????????????????????????????

7.3 Splay Trees 6. Feb. 2022

Harald Räcke 77/218

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the `-th element; return “error” if the

data-structure contains less than ` elements.

Augment an existing data-structure instead of developing a

new one.

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 77/218

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 78/218

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 79/218

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root,k) with

Algorithm 1 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 80/218

Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

select(25 , 14)

select(13 , 14)

select(21 , 5)

select(16 , 5)

select(19 , 3)

select(20 , 1)

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree

ñ adjust the rank that you are searching for if you go right

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 81/218

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 82/218

Rotations

The only operation during the fix-up procedure that alters the tree

and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 83/218

Augmenting Data Structures

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

See Chapter 14 of [CLRS90].

7.4 Augmenting Data Structures 6. Feb. 2022

Harald Räcke 84/218

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(n)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 84/218

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 86/218

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr).
Choose r = n 1

k+1 . Then

r−kn+ kr =
(
n

1
k+1

)−k
n+ kn 1

k+1

= n1− k
k+1 + kn 1

k+1

= (k+ 1)n
1
k+1 .

Choosing k = Θ(logn) gives a logarithmic running time.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 87/218

7.5 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 88/218

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists it actually appears in.

The time for both operations is dominated by the search

time.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 89/218

7.5 Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 90/218

High Probability

Definition 7 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 91/218

High Probability

Suppose there are polynomially many events E1, E2, . . . , E`, ` = nc
each holding with high probability (e.g. Ei may be the event that

the i-th search in a skip list takes time at most O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≥ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 92/218

7.5 Skip Lists

Lemma 8

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 93/218

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 94/218

7.5 Skip Lists

Estimation for Binomial Coefficients

(
n
k

)k
≤
(
n
k

)
≤
(
en
k

)k

(
n
k

)
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
(
n
k

)k

(
n
k

)
= n · . . . · (n− k+ 1)

k!
≤ n

k

k!
= n

k · kk
kk · k!

=
(
n
k

)k
· k

k

k!
≤
(
n
k

)k
·
∑

i≥0

ki

i!
=
(
en
k

)k

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 96/218

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
2−βk ·n−γα ≤

(
2ez
2βk

)k
·n−α

≤
(

2e(β+α)
2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 97/218

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

7.5 Skip Lists 6. Feb. 2022

Harald Räcke 99/218

7.6 van Emde Boas Trees

Dynamic Set Data Structure S:

ñ S. insert(x)
ñ S.delete(x)
ñ S. search(x)
ñ S.min()
ñ S.max()
ñ S. succ(x)
ñ S.pred(x)

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 99/218

7.6 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

ñ S. insert(x): Inserts x into S.

ñ S. delete(x): Deletes x from S. Usually assumes that x ∈ S.

ñ S.member(x): Returns 1 if x ∈ S and 0 otw.

ñ S.min(): Returns the value of the minimum element in S.

ñ S.max(): Returns the value of the maximum element in S.

ñ S. succ(x): Returns successor of x in S. Returns null if x is

maximum or larger than any element in S. Note that x needs

not to be in S.

ñ S. pred(x): Returns the predecessor of x in S. Returns null

if x is minimum or smaller than any element in S. Note that

x needs not to be in S.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 100/218

7.6 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a

restricted set?

In the following we assume that the keys are from

{0,1, . . . , u− 1}, where u denotes the size of the universe.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 101/218

Implementation 1: Array

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

represented bits

u

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic

set.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 102/218

Implementation 1: Array

Algorithm 1 array.insert(x)
1: content[x]← 1;

Algorithm 2 array.delete(x)
1: content[x]← 0;

Algorithm 3 array.member(x)
1: return content[x];

ñ Note that we assume that x is valid, i.e., it falls within the

array boundaries.

ñ Obviously(?) the running time is constant.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 103/218

Implementation 1: Array

Algorithm 4 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 5 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 104/218

Implementation 1: Array

Algorithm 6 array.succ(x)
1: for (i = x + 1; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 7 array.pred(x)
1: for (i = x − 1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 105/218

Implementation 2: Summary Array

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

√
u

√
u

√
u

√
u

√
u

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

represented bits

ñ √u cluster-arrays of
√
u bits.

ñ One summary-array of
√
u bits. The i-th bit in the summary

array stores the bit-wise or of the bits in the i-th cluster.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 106/218

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 107/218

Implementation 2: Summary Array

Algorithm 8 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 9 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 108/218

Implementation 2: Summary Array

Algorithm 10 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation on an array of size
√
u. Hence, O(√u).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 109/218

Implementation 2: Summary Array

Algorithm 11 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 12 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 110/218

Implementation 2: Summary Array

Algorithm 13 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 111/218

Implementation 2: Summary Array

Algorithm 14 pred(x)
1: m ← cluster[high(x)].pred(low(x))
2: if m ≠ null then return high(x) ◦m;

3: predcluster ← summary .pred(high(x));
4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();
6: return predcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 112/218

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

represented bits

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 113/218

Implementation 3: Recursion

We assume that u = 22k for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the

recursion).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 114/218

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 115/218

Implementation 3: Recursion

Algorithm 15 member(x)
1: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 116/218

Implementation 3: Recursion

Algorithm 16 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ Tins(u) = 2Tins(
√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 117/218

Implementation 3: Recursion

Algorithm 17 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ Tdel(u) = 2Tdel(
√
u)+ Tmin(

√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 118/218

Implementation 3: Recursion

Algorithm 18 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Tmin(u) = 2Tmin(
√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 119/218

Implementation 3: Recursion

Algorithm 19 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Tsucc(u) = 2Tsucc(
√
u)+ Tmin(

√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 120/218

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 121/218

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 122/218

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
`
2
)+ c` = 2X

(`
2

)+ c` .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 123/218

Implementation 4: van Emde Boas Trees

0 1 1 1

0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

b
it
-w

is
e

or

0 1 1 1

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

3

min

13

max

u
size

1 represented bits

ñ The bit referenced by min is not set within

sub-datastructures.

ñ The bit referenced by max is set within sub-datastructures (if

max ≠ min).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 124/218

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 125/218

Implementation 4: van Emde Boas Trees

Algorithm 20 max()
1: return max;

Algorithm 21 min()
1: return min;

ñ Constant time.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 126/218

Implementation 4: van Emde Boas Trees

Algorithm 22 member(x)
1: if x =min then return 1; // TRUE

2: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1 =⇒ T(u) = O(log logu).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 127/218

Implementation 4: van Emde Boas Trees

Algorithm 23 succ(x)
1: if min ≠ null ∧ x < min then return min;

2: maxincluster ← cluster[high(x)].max();
3: if maxincluster ≠ null ∧ low(x) < maxincluster then

4: offs ← cluster[high(x)]. succ(low(x));
5: return high(x) ◦ offs;

6: else

7: succcluster ← summary . succ(high(x));
8: if succcluster = null then return null;

9: offs ← cluster[succcluster].min();
10: return succcluster ◦ offs;

ñ Tsucc(u) = Tsucc(
√
u)+ 1 =⇒ Tsucc(u) = O(log logu).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 128/218

Implementation 4: van Emde Boas Trees

Algorithm 35 insert(x)
1: if min = null then

2: min = x; max = x;

3: else

4: if x <min then exchange x and min;

5: if x >max then max = x;

6: if cluster[high(x)].min = null; then

7: summary . insert(high(x));
8: cluster[high(x)]. insert(low(x));
9: else

10: cluster[high(x)]. insert(low(x));

ñ Tins(u) = Tins(
√
u)+ 1 =⇒ Tins(u) = O(log logu).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 129/218

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 8 takes constant time as the

if-condition in Line 6 ensures that we are inserting in an empty

sub-tree.

The only non-constant recursive calls are the call in Line 7 and in

Line 10. These are mutually exclusive, i.e., only one of these calls

will actually occur.

From this we get that Tins(u) = Tins(
√
u)+ 1.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 130/218

Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 36 delete(x)
1: if min =max then

2: min =max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

find new minimum

delete

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 131/218

Implementation 4: van Emde Boas Trees

Algorithm 36 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

fix maximum

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 132/218

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and

Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the

cluster where x was deleted is now empty. But this means that

the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form

Tdel(u) = Tdel(
√
u)+ c .

This gives Tdel(u) = O(log logu).

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 133/218

7.6 van Emde Boas Trees

Space requirements:

ñ The space requirement fulfills the recurrence

S(u) = (√u+ 1)S(
√
u)+O(√u) .

ñ Note that we cannot solve this recurrence by the Master

theorem as the branching factor is not constant.

ñ One can show by induction that the space requirement is

S(u) = O(u). Exercise.

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 134/218

ñ Let the “real” recurrence relation be

S(k2) = (k+ 1)S(k)+ c1 · k; S(4) = c2

ñ Replacing S(k) by R(k) := S(k)/c2 gives the recurrence

R(k2) = (k+ 1)R(k)+ ck; R(4) = 1

where c = c1/c2 < 1.

ñ Now, we show R(k) ≤ k− 2 for squares k ≥ 4.
ñ Obviously, this holds for k = 4.
ñ For k = `2 > 4 with ` integral we have

R(k) = (1+ `)R(`)+ c`
≤ (1+ `)(` − 2)+ ` ≤ k− 2

ñ This shows that R(k) and, hence, S(k) grows linearly.

van Emde Boas Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

See Chapter 20 of [CLRS90].

7.6 van Emde Boas Trees 6. Feb. 2022

Harald Räcke 136/218

7.7 Hashing

Dictionary:

ñ S. insert(x): Insert an element x.

ñ S. delete(x): Delete the element pointed to by x.

ñ S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.7 Hashing 6. Feb. 2022

Harald Räcke 136/218

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ |U|.
ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

7.7 Hashing 6. Feb. 2022

Harald Räcke 137/218

Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅

k6

k3

∅

∅

k7

∅

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

7.7 Hashing 6. Feb. 2022

Harald Räcke 138/218

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

Such a hash function h is called a perfect hash function for set S.

7.7 Hashing 6. Feb. 2022

Harald Räcke 139/218

Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

7.7 Hashing 6. Feb. 2022

Harald Räcke 140/218

Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 9

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

7.7 Hashing 6. Feb. 2022

Harald Räcke 141/218

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

7.7 Hashing 6. Feb. 2022

Harald Räcke 142/218

Collisions

− 3 −2 −1 1 2 3

1

2

3

4

x

f(x) e−x

1− x

The inequality 1− x ≤ e−x is derived by stopping the

Taylor-expansion of e−x after the second term.

7.7 Hashing 6. Feb. 2022

Harald Räcke 143/218

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.

7.7 Hashing 6. Feb. 2022

Harald Räcke 144/218

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

∅

∅

∅

∅

k1 k4 ∅

k5 k2 k7 ∅

k3 ∅

k8 k6 ∅

7.7 Hashing 6. Feb. 2022

Harald Räcke 145/218

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.7 Hashing 6. Feb. 2022

Harald Räcke 146/218

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

7.7 Hashing 6. Feb. 2022

Harald Räcke 147/218

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]keys before ki

cost for key ki

7.7 Hashing 6. Feb. 2022

Harald Räcke 148/218

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

7.7 Hashing 6. Feb. 2022

Harald Räcke 149/218

Hashing with Chaining

Disadvantages:

ñ pointers increase memory requirements

ñ pointers may lead to bad cache efficiency

Advantages:

ñ no à priori limit on the number of elements

ñ deletion can be implemented efficiently

ñ by using balanced trees instead of linked list one can also

obtain worst-case guarantees.

7.7 Hashing 6. Feb. 2022

Harald Räcke 150/218

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.7 Hashing 6. Feb. 2022

Harald Räcke 151/218

Open Addressing

Choices for h(k, j):
ñ Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

ñ Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

ñ Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.7 Hashing 6. Feb. 2022

Harald Räcke 152/218

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 10

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

7.7 Hashing 6. Feb. 2022

Harald Räcke 153/218

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 11

Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

7.7 Hashing 6. Feb. 2022

Harald Räcke 154/218

Double Hashing

ñ Any probe into the hash-table usually creates a cache-miss.

Lemma 12

Let D be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

7.7 Hashing 6. Feb. 2022

Harald Räcke 155/218

Open Addressing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

7.7 Hashing 6. Feb. 2022

Harald Räcke 156/218

Open Addressing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

α

#probes

L− Q− D−

L+ Q+ D+

7.7 Hashing 6. Feb. 2022

Harald Räcke 157/218

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open

Addressing scheme.

ñ The probe sequence h(k,0), h(k,1), h(k,2), . . . is equally

likely to be any permutation of 〈0,1, . . . , n− 1〉.

7.7 Hashing 6. Feb. 2022

Harald Räcke 158/218

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

7.7 Hashing 6. Feb. 2022

Harald Räcke 159/218

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

7.7 Hashing 6. Feb. 2022

Harald Räcke 160/218

Analysis of Idealized Open Address Hashing

∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]
i = 3

1 2 3 4 5 6 7

i

Pr[X = i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

7.7 Hashing 6. Feb. 2022

Harald Räcke 161/218

Analysis of Idealized Open Address Hashing

∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

i = 4

1 2 3 4 5 6 7

i

Pr[X = i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

7.7 Hashing 6. Feb. 2022

Harald Räcke 161/218

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

7.7 Hashing 6. Feb. 2022

Harald Räcke 162/218

Analysis of Idealized Open Address Hashing

m−n m−n+ 1 n

1
m−n+1

1
m−n+2

1
n

f(x) = 1
x

x

f(x)

n∑

k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

7.7 Hashing 6. Feb. 2022

Harald Räcke 163/218

Deletions in Hashtables

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

7.7 Hashing 6. Feb. 2022

Harald Räcke 164/218

Deletions in Hashtables

ñ Simply removing a key might interrupt the probe sequence of

other keys which then cannot be found anymore.

ñ One can delete an element by replacing it with a
deleted-marker.
ñ During an insertion if a deleted-marker is encountered an

element can be inserted there.
ñ During a search a deleted-marker must not be used to

terminate the probe sequence.

ñ The table could fill up with deleted-markers leading to bad

performance.

ñ If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.7 Hashing 6. Feb. 2022

Harald Räcke 165/218

Deletions for Linear Probing

ñ For Linear Probing one can delete elements without using

deletion-markers.

ñ Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.

7.7 Hashing 6. Feb. 2022

Harald Räcke 166/218

Deletions for Linear Probing

Algorithm 37 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.

7.7 Hashing 6. Feb. 2022

Harald Räcke 167/218

Universal Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

7.7 Hashing 6. Feb. 2022

Harald Räcke 168/218

Universal Hashing

Definition 13

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .

7.7 Hashing 6. Feb. 2022

Harald Räcke 169/218

Universal Hashing

Definition 14

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.

7.7 Hashing 6. Feb. 2022

Harald Räcke 170/218

Universal Hashing

Definition 15

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.7 Hashing 6. Feb. 2022

Harald Räcke 171/218

Universal Hashing

Definition 16

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
µ
n`

,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.7 Hashing 6. Feb. 2022

Harald Räcke 172/218

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 17

The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.7 Hashing 6. Feb. 2022

Harald Räcke 173/218

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.7 Hashing 6. Feb. 2022

Harald Räcke 174/218

Universal Hashing
ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ty − ay (mod p)

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

7.7 Hashing 6. Feb. 2022

Harald Räcke 176/218

Universal Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

7.7 Hashing 6. Feb. 2022

Harald Räcke 177/218

Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[
tx mod n=h1∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

7.7 Hashing 6. Feb. 2022

Harald Räcke 178/218

Universal Hashing

Definition 18

Let d ∈ N; q ≥ (d+ 1)n be a prime; and let ā ∈ {0, . . . , q − 1}d+1.

Define for x ∈ {0, . . . , q − 1}

hā(x) :=
(d∑

i=0

aixi mod q
)

mod n .

Let Hd
n := {hā | ā ∈ {0, . . . , q − 1}d+1}. The class H d

n is

(e, d+ 1)-independent.

Note that in the previous case we had d = 1 and chose ad ≠ 0.

7.7 Hashing 6. Feb. 2022

Harald Räcke 179/218

Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

7.7 Hashing 6. Feb. 2022

Harald Räcke 180/218

Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our polynomial

by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).

• A` denotes the set of hash-
functions such that every xi
hits its pre-defined position
ti.

• Bi is the set of positions that
fā can hit so that hā still hits
ti.

Universal Hashing

Now, we choose d− ` + 1 other inputs and choose their value

arbitrarily. We have qd−`+1 possibilities to do this.

Therefore we have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

7.7 Hashing 6. Feb. 2022

Harald Räcke 182/218

Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤ (
q+n
n)

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.

7.7 Hashing 6. Feb. 2022

Harald Räcke 183/218

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

7.7 Hashing 6. Feb. 2022

Harald Räcke 184/218

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

7.7 Hashing 6. Feb. 2022

Harald Räcke 185/218

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

7.7 Hashing 6. Feb. 2022

Harald Räcke 186/218

Perfect Hashing

k1

k2
k3

k4
k5

k6
k7

k8

∅ m2 m3 ∅ ∅ m6 ∅ m8

U
universe
of keys

S (actual keys)

k1 k6 ∅ k4 ∅ ∅ ∅ k3 k2 ∅ ∅ ∅ k8 k5 ∅ ∅ k7 ∅

∑
imi =m

m2
2 m2

3 m2
6 m2

8

7.7 Hashing 6. Feb. 2022

Harald Räcke 187/218

Perfect Hashing

The total memory that is required by all hash-tables is O(∑jm2
j).

Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level. Since we use universal hashing we have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.7 Hashing 6. Feb. 2022

Harald Räcke 188/218

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m), because with probability at least 1/2 a random

function from a universal family will have this property.

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket. A random function hj is

collision-free with probability at least 1/2. We need O(mj) to test

this.

We only need that the hash-functions are chosen from a universal

family!!!

7.7 Hashing 6. Feb. 2022

Harald Räcke 189/218

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time

in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

7.7 Hashing 6. Feb. 2022

Harald Räcke 190/218

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

x6

x1

x7

x6

x1

7.7 Hashing 6. Feb. 2022

Harald Räcke 191/218

Cuckoo Hashing

Algorithm 38 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: steps← steps+1
9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)

7.7 Hashing 6. Feb. 2022

Harald Räcke 192/218

Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.

7.7 Hashing 6. Feb. 2022

Harald Räcke 193/218

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.7 Hashing 6. Feb. 2022

Harald Räcke 194/218

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x12

x8

x4

x3

x2

x = x1

x9

x10

x11

x
12

xx2x3x4x5x6x7x8x4x3x2x = x1x9x10x11x12x3

7.7 Hashing 6. Feb. 2022

Harald Räcke 195/218

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.

7.7 Hashing 6. Feb. 2022

Harald Räcke 196/218

Cuckoo Hashing

A cycle-structure is active if for every key x` (linking a cell pi from

T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.

7.7 Hashing 6. Feb. 2022

Harald Räcke 197/218

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.7 Hashing 6. Feb. 2022

Harald Räcke 198/218

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at

most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?

7.7 Hashing 6. Feb. 2022

Harald Räcke 199/218

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the forward

and backward links.

ñ There are at most s possibilities to choose where to place key

x.

ñ There are ms−1 possibilities to choose the keys apart from x.

ñ There are ns−1 possibilities to choose the cells.

7.7 Hashing 6. Feb. 2022

Harald Räcke 200/218

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.7 Hashing 6. Feb. 2022

Harald Räcke 201/218

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful

without running into a closed cycle.

7.7 Hashing 6. Feb. 2022

Harald Räcke 202/218

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7

Sequence of visited keys:

x = x1, x2, x3, x4, x5, x6, x7, x3, x2, x1 = x, x8, x9, . . .

7.7 Hashing 6. Feb. 2022

Harald Räcke 203/218

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 19

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.

7.7 Hashing 6. Feb. 2022

Harald Räcke 204/218

Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → ·· · → xi → xr → xr−1 → ·· · → x1 → xi+1 → ·· · → xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → ·· · → xi or sub-sequence

x1 → xi+1 → ·· · → xj has at least p+2
3 elements.

Taking x1 → ·· · → xi twice, and x1 → xi+1 → . . . xj once
gives 2i+ (j − i+ 1) = i+ j + 1 ≥ p + 2 keys. Hence, one of
the sequences contains at least (p + 2)/3 keys.

7.7 Hashing 6. Feb. 2022

Harald Räcke 205/218

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

ñ s + 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is either from T1 or T2.

7.7 Hashing 6. Feb. 2022

Harald Räcke 206/218

Cuckoo Hashing

A path-structure is active if for every key x` (linking a cell pi from

T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If a phase takes at least t steps without running into a cycle there

must exist an active path-structure of size (2t + 2)/3.

Note that we count complete steps. A search
that touches 2t or 2t + 1 keys takes t steps.

7.7 Hashing 6. Feb. 2022

Harald Räcke 207/218

Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size s
is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
(
m
n

)s−1

≤ 2µ2
(

1
1+ ε

)s−1

Plugging in s = (2t + 2)/3 gives

≤ 2µ2
(

1
1+ ε

)(2t+2)/3−1

= 2µ2
(

1
1+ ε

)(2t−1)/3
.

7.7 Hashing 6. Feb. 2022

Harald Räcke 208/218

Cuckoo Hashing

We choose maxsteps ≥ 3`/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is at

most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3]

≤ Pr[∃ active path-structure of size at least ` + 1]

≤ Pr[∃ active path-structure of size exactly ` + 1]

≤ 2µ2
(1

1+ ε
)` ≤ 1

m2

by choosing ` ≥ log
(1

2µ2m2

)
/log

(1
1+ε

) = log
(
2µ2m2

)
/log

(
1+ ε)

This gives maxsteps = Θ(logm). Note that the existence of a path structure of
size larger than s implies the existence of a
path structure of size exactly s.

7.7 Hashing 6. Feb. 2022

Harald Räcke 209/218

Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
(1
m2

)

and

Pr[unsuccessful | no cycle] ≤ O
(1
m2

)

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

for a suitable constant c > 0. This is a very weak (and trivial)
statement but still sufficient for
our asymptotic analysis.

7.7 Hashing 6. Feb. 2022

Harald Räcke 210/218

Cuckoo Hashing
The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .

Pr[A | B] = Pr[A∧ B]
Pr[B]

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

∑

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

∑

t≥1

2µ2
(1

1+ ε
)(2t−1)/3 = 1

c

∑

t≥0

2µ2
(1

1+ ε
)(2(t+1)−1)/3

= 2µ2

c(1+ ε)1/3
∑

t≥0

(1
(1+ ε)2/3

)t = O(1) .

This means the expected cost for a successful phase is constant

(even after accounting for the cost of the incomplete step that

finishes the phase).

7.7 Hashing 6. Feb. 2022

Harald Räcke 212/218

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is∑
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is O(m) · O(p) = O(1).

7.7 Hashing 6. Feb. 2022

Harald Räcke 213/218

Formal Proof

Let Yi denote the event that the i-th rehash occurs and does not

lead to a valid configuration (i.e., one of the m+ 1 insertions

fails):

Pr[Yi|Zi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi] = E[steps | phase successful] · Pr[phase sucessful]

+maxsteps ·Pr[not sucessful] = O(1) .

The 0-th (re)hash is the initial
configuration when doing the
insert.

The expected cost for all rehashes is

E
[∑

i

∑
s ZiX

s
i

]

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
[∑

i

∑
s ZiX

i
s

]
=
∑
i

∑
s E[Zi] · E[Xis]

≤ O(m) ·
∑
i p
i

≤ O(m) · p
1− p

= O(1) .

7.7 Hashing 6. Feb. 2022

Harald Räcke 215/218

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure or

cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.

7.7 Hashing 6. Feb. 2022

Harald Räcke 216/218

Cuckoo Hashing

How do we make sure that n ≥ (1 + ε)m?

ñ Let α := 1/(1+ ε).
ñ Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.7 Hashing 6. Feb. 2022

Harald Räcke 217/218

Cuckoo Hashing

Lemma 20

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of

keys/total number of hash-table slots) is at most 1
2(1+ε) .

The 1/(2(1+ ε)) fill-factor comes from the fact that the total hash-table
is of size 2n (because we have two tables of size n); moreover m ≤
(1+ ε)n.

7.7 Hashing 6. Feb. 2022

Harald Räcke 218/218

Hashing

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Chapter 4 of [MS08] contains a detailed description about Hashing with Linear Probing and Hashing
with Chaining. Also the Perfect Hashing scheme can be found there.

The analysis of Hashing with Chaining under the assumption of uniform hashing can be found in
Chapter 11.2 of [CLRS90]. Chapter 11.3.3 describes Universal Hashing. Collision resolution with Open
Addressing is described in Chapter 11.4. Chapter 11.5 describes the Perfect Hashing scheme.

Reference for Cuckoo Hashing???

7.7 Hashing 6. Feb. 2022

Harald Räcke 219/218

	Dictionary
	Binary Search Trees
	Red Black Trees
	Splay Trees
	Augmenting Data Structures
	Skip Lists
	van Emde Boas Trees
	Hashing
	Hashing with Chaining
	Open Addressing
	Deletions in Hashtables
	Universal Hashing
	Perfect Hashing
	Cuckoo Hashing

