
Matching

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

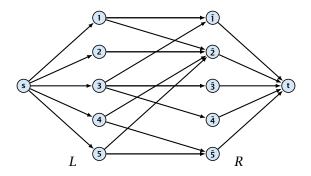


12.1 Matching

6. Feb. 2022 138/153

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

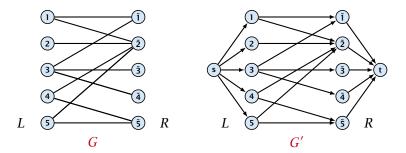


12.1 Matching

6. Feb. 2022 139/153

Maxflow Formulation

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from *L* to *R*.
- Add source s and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

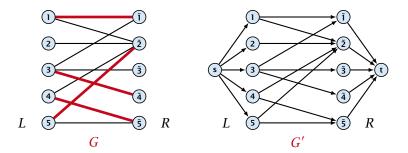


12.1 Matching

6. Feb. 2022 140/153

Max cardinality matching in $G \leq$ value of maxflow in G'

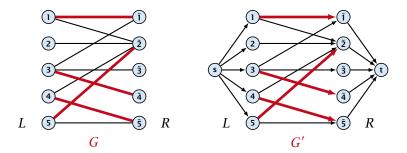
- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.



12.1 Matching

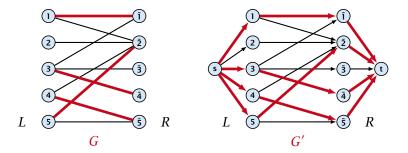
6. Feb. 2022 141/153

Max cardinality matching in $G \leq$ value of maxflow in G'


- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.



12.1 Matching

6. Feb. 2022 141/153

Max cardinality matching in $G \leq$ value of maxflow in G'

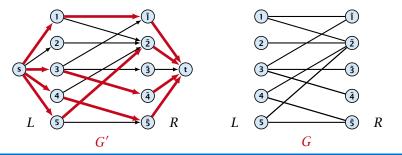
- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.

12.1 Matching

6. Feb. 2022 141/153

Max cardinality matching in $G \ge$ value of maxflow in G'

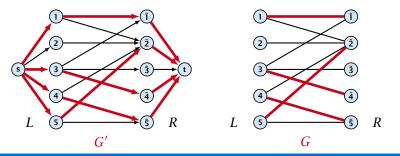
- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.



12.1 Matching

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.



12.1 Matching

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.

12.1 Matching

12.1 Matching

Which flow algorithm to use?

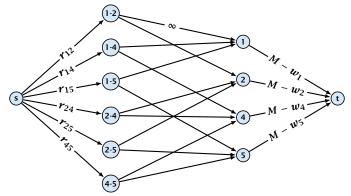
- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	—	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?



Formal definition of the problem:

- Given a set *S* of teams, and one specific team $z \in S$.
- Team x has already won w_x games.
- Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

Flow network for z = 3. *M* is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

6. Feb. 2022 146/153

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$

wins of
teams in T remaining games
among teams in T

If $\frac{w(T)+r(T)}{|T|} > M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} \gamma_{ij}$.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

Consider the mincut A in the flow network. Let T be the set of team-nodes in A.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\})$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$ $\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$ $\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$ $\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$ $\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$ $\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Proof (⇒)

Suppose we have a flow that saturates all source edges.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M w_{\chi}$ because of capacity constraints.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M w_{\chi}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M w_{\chi}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project selection problem:

Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).

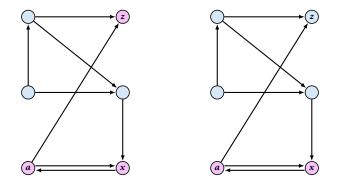
Project selection problem:

- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

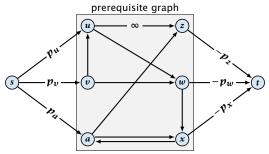
Project selection problem:


- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.

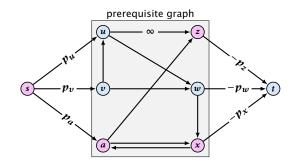


12.3 Project Selection

6. Feb. 2022 151/153

Mincut formulation:

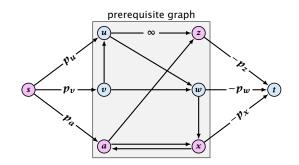
- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v, t) with capacity -pv for nodes v with negative profit.


6. Feb. 2022 152/153

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

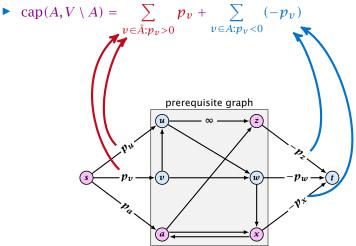
A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.


► *A* is feasible because of capacity infinity edges.

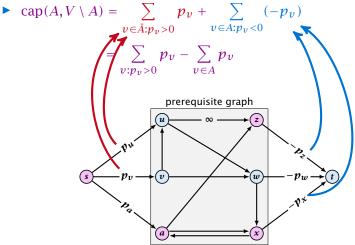
A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.


- ► *A* is feasible because of capacity infinity edges.
- cap $(A, V \setminus A)$

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.


A is feasible because of capacity infinity edges.

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

A is feasible because of capacity infinity edges.

