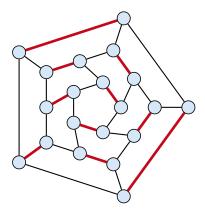
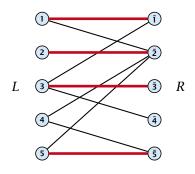
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



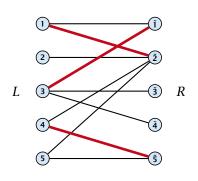
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



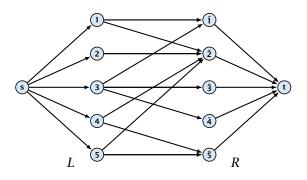
Harald Räcke

12.1 Matching

6. Feb. 2022 138/153

Maxflow Formulation

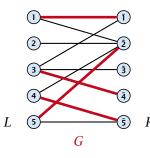
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ightharpoonup Direct all edges from L to R.
- ▶ Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.



Proof

Max cardinality matching in $G \leq \text{value of maxflow in } G'$

- ightharpoonup Given a maximum matching M of cardinality k.
- ightharpoonup Consider flow f that sends one unit along each of k paths.
- ightharpoonup f is a flow and has cardinality k.





∏∐∏∐ Harald Räcke

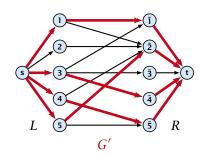
12.1 Matching

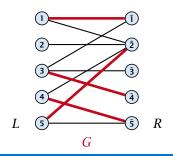
141/153

Proof

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ▶ Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.





Harald Räcke

12.1 Matching

6. Feb. 2022 142/153

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ▶ Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- ▶ Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

A graph is a unit capacity simple graph if

- every edge has capacity 1
- a node has either at most one leaving edge or at most

12.1 Matching

Baseball Elimination

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	_	0	2
New York	78	78	6	0	_	0
Montreal	77	82	1	2	0	_

Which team can end the season with most wins?

Montreal is eliminated, since even after winning all remaining games there are only 80 wins.

12.2 Baseball Elimination

But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ▶ Team x still has to play team y, r_{xy} times.
- ▶ Does team z still have a chance to finish with the most number of wins.

Harald Räcke

12.2 Baseball Elimination

6. Feb. 2022 145/153

Certificate of Elimination

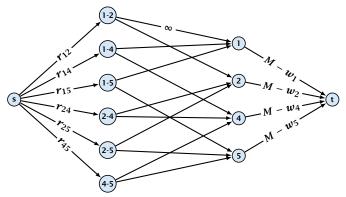
Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Harald Räcke

12.2 Baseball Elimination

6. Feb. 2022

146/153

Theorem 5

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{ij}$.

Proof (⇐)

- ► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- ▶ If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

▶ This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Baseball Elimination

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- ▶ We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team γ should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- ▶ Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.
- Hence, team z is not eliminated.

Harald Räcke

12.2 Baseball Elimination

6. Feb. 2022

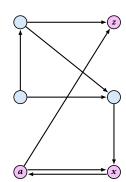
151/153

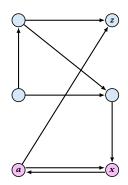
149/153

Project Selection

The prerequisite graph:

- \blacktriangleright {x, a, z} is a feasible subset.
- \triangleright {x, a} is infeasible.





Project Selection

Project selection problem:

- \triangleright Set P of possible projects. Project v has an associated profit p_{ν} (can be positive or negative).
- ► Some projects have requirements (taking course EA2 requires course EA1).
- ightharpoonup Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ► A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

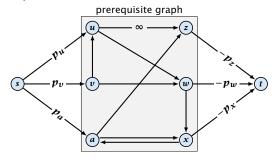
12.3 Project Selection

6. Feb. 2022 150/153

Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.



Theorem 6 A is a mincut if $A \setminus \{s\}$ is the optimal set of projects. Proof. ightharpoonup A is feasible because of capacity infinity edges. $cap(A, V \setminus A) = \sum_{v \in \overline{A}: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$ $= \sum_{v: p_v > 0} p_v - \sum_{v \in A} p_v$ prerequisite graph For the formula we define $p_s := 0$. The step follows by adding $\sum_{v \in A: p_v > 0} p_v - 1$ $\sum_{v \in A: p_v > 0} p_v = 0.$ Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.

