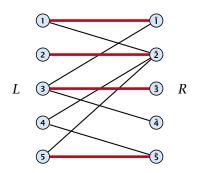
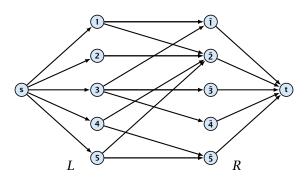

Matching

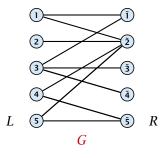
- ▶ Input: undirected graph G = (V, E).
- ► $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

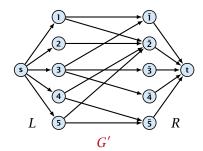

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

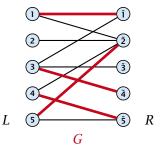

Bipartite Matching

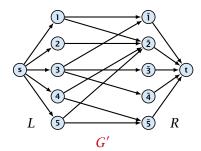
- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

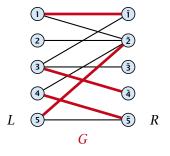


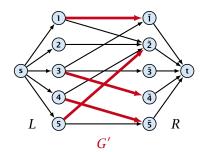

Maxflow Formulation

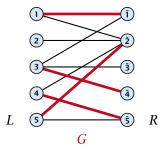
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- Add source s and connect it to all nodes on the left.
- ightharpoonup Add t and connect all nodes on the right to t.
- All edges have unit capacity.

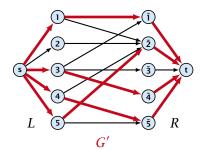


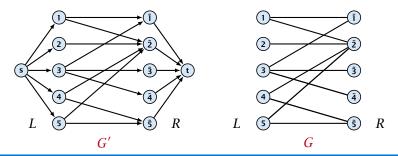

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- \blacktriangleright f is a flow and has cardinality k.



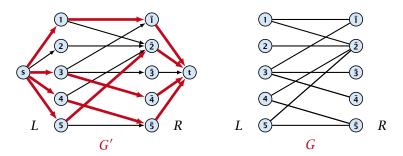

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- \blacktriangleright f is a flow and has cardinality k.




- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

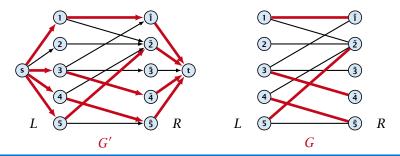

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

Max cardinality matching in $G \ge \text{value of maxflow in } G'$


- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.

6. Feb. 2022 142/153

Max cardinality matching in $G \ge \text{value of maxflow in } G'$


- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.

6. Feb. 2022 142/153

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.

6. Feb. 2022 142/153

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $O(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

A graph is a unit capacity simple graph if

- every edge has capacity 1
- a node has either at most one leaving edge or at most one entering edge

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	_	0
Montreal	77	82	1	2	0	_

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ► Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

Flow network for z = 3. M is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T remaining games among teams in T

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

Proof (←)

Consider the mincut A in the flow network. Let T be the set of team-nodes in A.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} \gamma_{ij}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\})$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{i,j}$.

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

 $\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{i,j}$.

Proof (←)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Proof (⇒)

Suppose we have a flow that saturates all source edges.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ► The flow leaving the team-node *x* can be interpreted as the additional number of wins that team *x* will obtain.

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x \cdot y$ it defines how many games team x and team γ should win.
- \triangleright The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.

149/153

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- ► Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.

149/153

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project selection problem:

Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).

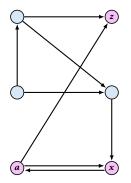
Project selection problem:

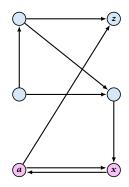
- Set P of possible projects. Project v has an associated profit p_{ν} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- **Dependencies** are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."

Project selection problem:

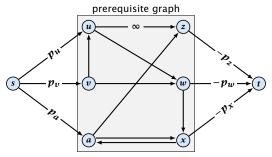
- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

Project selection problem:


- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset *A* of projects is **feasible** if the prerequisites of every project in *A* also belong to *A*.


Goal: Find a feasible set of projects that maximizes the profit.

The prerequisite graph:


- \blacktriangleright {x, a, z} is a feasible subset.
- \triangleright {x, a} is infeasible.

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- ► Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.

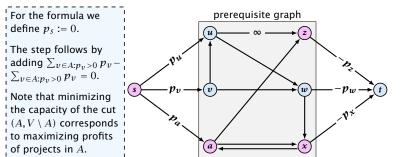
A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

ightharpoonup A is feasible because of capacity infinity edges.

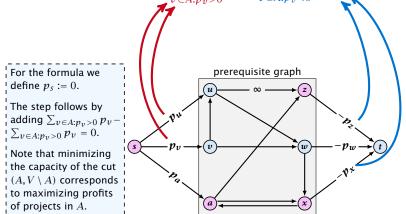
For the formula we define $p_s := 0$.


The step follows by adding $\sum_{v \in A: p_v > 0} p_v - \sum_{v \in A: p_v > 0} p_v = 0$.

Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.

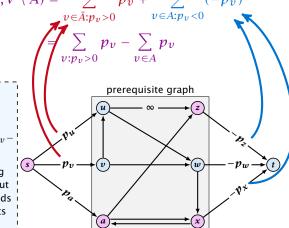
A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.


- A is feasible because of capacity infinity edges.
- ightharpoonup cap $(A, V \setminus A)$

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.


- ightharpoonup A is feasible because of capacity infinity edges.
- $cap(A, V \setminus A) = \sum_{v \in \bar{A}: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.

define $p_s := 0$. The step follows by adding $\sum_{v \in A: p_v > 0} p_v - \sum_{v \in A: p_v > 0} p_v = 0$.

For the formula we

Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.