21 Gomory Hu Trees

Given an undirected, weighted graph G = (V, E, c) a cut-tree T = (V, F, w) is a tree with edge-set F and capacities w that fulfills the following properties.

- **1. Equivalent Flow Tree:** For any pair of vertices $s, t \in V$, f(s, t) in G is equal to $f_T(s, t)$.
- 2. Cut Property: A minimum *s*-*t* cut in *T* is also a minimum cut in *G*.

Here, f(s,t) is the value of a maximum *s*-*t* flow in *G*, and $f_T(s,t)$ is the corresponding value in *T*.

Overview of the Algorithm

The algorithm maintains a partition of V, (sets $S_1, ..., S_t$), and a spanning tree T on the vertex set $\{S_1, ..., S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n - 1 split-operations:

- In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- S_i is then removed from T and replaced by X and Y.
- X and Y are connected by an edge, and the edges that before the split were incident to S_i are attached to either X or Y.

In the end this gives a tree on the vertex set V.

Details of the Split-operation

- Select *S_i* that contains at least two nodes *a* and *b*.
- Compute the connected components of the forest obtained from the current tree *T* after deleting *S_i*. Each of these components corresponds to a set of vertices from *V*.
- Consider the graph *H* obtained from *G* by contracting these connected components into single nodes.
- Compute a minimum *a*-*b* cut in *H*. Let *A*, and *B* denote the two sides of this cut.
- Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_x\}$ by $\{S_i^a, S_x\}$ if $S_x \subset A$ and by $\{S_i^b, S_x\}$ if $S_x \subset B$.

Example: Gomory-Hu Construction

6. Feb. 2022 186/198

Lemma 6

For nodes $s, t, x \in V$ we have $f(s, t) \ge \min\{f(s, x), f(x, t)\}$

Lemma 7 For nodes $s, t, x_1, ..., x_k \in V$ we have $f(s,t) \ge \min\{f(s,x_1), f(x_1,x_2), ..., f(x_{k-1},x_k), f(x_k,t)\}$

Lemma 8

Let *S* be some minimum r-*s* cut for some nodes $r, s \in V$ ($s \in S$), and let $v, w \in S$. Then there is a minimum v-w-cut *T* with $T \subset S$.

Proof: Let *X* be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside *S*. We may assume w.l.o.g. $s \in X$.

First case $r \in X$.

- $\operatorname{cap}(X \setminus S) + \operatorname{cap}(S \setminus X) \le \operatorname{cap}(S) + \operatorname{cap}(X)$.
- $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- This gives $cap(S \setminus X) \le cap(X)$.

Second case $r \notin X$.

- $\operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X)$.
- $cap(X \cup S) \ge cap(S)$ because $X \cup S$ is an r-s cut.
- This gives $cap(S \cap X) \le cap(X)$.

$\operatorname{cap}(S \setminus X) + \operatorname{cap}(X \setminus S) \le \operatorname{cap}(S) + \operatorname{cap}(X)$

21 Gomory Hu Trees

6. Feb. 2022 189/198

$\operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X)$

6. Feb. 2022 190/198

Lemma 8 tells us that if we have a graph G = (V, E) and we contract a subset $X \subset V$ that corresponds to some mincut, then the value of f(s, t) does not change for two nodes $s, t \notin X$.

We will show (later) that the connected components that we contract during a split-operation each correspond to some mincut and, hence, $f_H(s,t) = f(s,t)$, where $f_H(s,t)$ is the value of a minimum *s*-*t* mincut in graph *H*.

Invariant [existence of representatives]:

For any edge $\{S_i, S_j\}$ in T, there are vertices $a \in S_i$ and $b \in S_j$ such that $w(S_i, S_j) = f(a, b)$ and the cut defined by edge $\{S_i, S_j\}$ is a minimum a-b cut in G.

We first show that the invariant implies that at the end of the algorithm T is indeed a cut-tree.

▶ Let $s = x_0, x_1, ..., x_{k-1}, x_k = t$ be the unique simple path from *s* to *t* in the final tree *T*. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all *j*.

Then

$$\begin{split} f_T(s,t) &= \min_{i \in \{0,\dots,k-1\}} \{ w(x_i,x_{i+1}) \} \\ &= \min_{i \in \{0,\dots,k-1\}} \{ f(x_i,x_{i+1}) \} \le f(s,t) \end{split}$$

• Let $\{x_j, x_{j+1}\}$ be the edge with minimum weight on the path.

Since by the invariant this edge induces an *s*-*t* cut with capacity *f*(*x_j*, *x_{j+1}) we get f*(*s*, *t*) ≤ *f*(*x_j*, *x_{j+1}) = f_T(s, <i>t*).

- Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- The edge $\{x_j, x_{j+1}\}$ is a mincut between *s* and *t* in *T*.
- By invariant, it forms a cut with capacity f(x_j, x_{j+1}) in G (which separates s and t).
- Since, we can send a flow of value f(x_j, x_{j+1}) btw. s and t, this is an s-t mincut (cut property).

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 8.

After the split we have to choose representatives for all edges. For the new edge $\{S_i^a, S_i^b\}$ with capacity $w(S_i^a, S_i^b) = f_H(a, b)$ we can simply choose a and b as representatives.

Proof of Invariant

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to show that f(x, a) = f(x, s).

Proof of Invariant

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in *G* of capacity f(x, s). Since, *x* and *a* are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

The set *B* forms a mincut separating *a* from *b*. Contracting all nodes in this set gives a new graph G' where the set *B* is represented by node v_B . Because of Lemma 8 we know that f'(x, a) = f(x, a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}$.

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Also, $f'(a, v_B) \ge f(a, b) \ge f(x, s)$ since the *a*-*b* cut that splits S_i into S_i^a and S_i^b also separates *s* and *x*.

21 Gomory Hu Trees

6. Feb. 2022 198/198