
8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S. build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S. insert(x): Adds element x to the data-structure.

ñ element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ element S. delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ boolean S. is-empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := ∅.

6. Feb. 2022

Harald Räcke 90/146

8 Priority Queues

An addressable Priority Queue also supports:

ñ handle S. insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S. delete(h): Deletes element specified through handle h.

ñ S. decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

8 Priority Queues 6. Feb. 2022

Harald Räcke 91/146

Dijkstra’s Shortest Path Algorithm

Algorithm 1 Shortest-Path(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. (v,x) ∈ E do
11: if x.key > v.key+d(v,x) then
12: S.decrease-key(hx,v.key+d(v,x));
13: x.key← v.key+d(v,x);

8 Priority Queues 6. Feb. 2022

Harald Räcke 92/146

Prim’s Minimum Spanning Tree Algorithm

Algorithm 2 Prim-MST(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. {v,x} ∈ E do
11: if x.key > d(v,x) then
12: S.decrease-key(hx,d(v,x));
13: x.key← d(v,x);
14: x.pred← v;

8 Priority Queues 6. Feb. 2022

Harald Räcke 93/146

Analysis of Dijkstra and Prim

Both algorithms require:

ñ 1 build() operation

ñ |V | insert() operations

ñ |V | delete-min() operations

ñ |V | is-empty() operations

ñ |E| decrease-key() operations

How good a running time can we obtain?

8 Priority Queues 6. Feb. 2022

Harald Räcke 94/146

8 Priority Queues

Operation
Binary
Heap BST

Binomial
Heap

Fibonacci
Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

** The standard version of binary heaps is not address-
able. Hence, it does not support a delete.

* Fibonacci heaps only give an amor-
tized guarantee.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time

O((|V | + |E|) log |V |).

Using Fibonacci Heaps, Prim and Dijkstra run in time

O(|V | log |V | + |E|).

8 Priority Queues 6. Feb. 2022

Harald Räcke 96/146

8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full, and

this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of one

of its children.

7

159

19311117

13 1225 43 80

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 97/146

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 98/146

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 99/146

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 100/146

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

15

9

19

31

1117

13 1225 43 80 x1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 101/146

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

9

16 19121718

27 2025 43 13 x1 x

13e

At its new position e may either travel up or down in the tree (but

not both directions).

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 102/146

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
ñ insert(k): insert at successor of x and bubble up. Time

O(logn).
ñ delete(h): swap with x and bubble up or sift-down. Time

O(logn).

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 103/146

Build Heap

We can build a heap in linear time:

31

30

2928 27 26 2524 23 22 21 20 19 18

17

16

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) =
∑

i
i2h−i = O(2h) = O(n)

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 104/146

Binary Heaps

Operations:

ñ minimum(): Return the root-element. Time O(1).
ñ is-empty(): Check whether root-pointer is null. Time O(1).
ñ insert(k): Insert at x and bubble up. Time O(logn).
ñ delete(h): Swap with x and bubble up or sift-down. Time

O(logn).
ñ build(x1, . . . , xn): Insert elements arbitrarily; then do

sift-down operations starting with the lowest layer in the tree.

Time O(n).

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 105/146

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain their positions and therefore there are no stable handles.

8.1 Binary Heaps 6. Feb. 2022

Harald Räcke 106/146

8.2 Binomial Heaps

Operation
Binary
Heap BST

Binomial
Heap

Fibonacci
Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 107/146

Binomial Trees

B0 B1 B2 B3 B4

Bt−1

Bt−1

Bt

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 108/146

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 109/146

Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, B1, and B0.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 110/146

Binomial Trees

B4

B3

B2

B1

B0

Deleting the leaf furthest from the root (in B5) leaves a path that

connects the roots of sub-trees B4, B3, B2, B1, and B0.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 111/146

Binomial Trees

Bk−1

Bk

(
k−1
`

)

(
k−1
`−1

)

The number of nodes on level ` in tree Bk is therefore

(
k− 1
` − 1

)
+
(
k− 1
`

)
=
(
k
`

)

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 112/146

Binomial Trees
0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bk, . . . , b1 is obtained by setting

the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 113/146

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 114/146

8.2 Binomial Heaps

ñ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

ñ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 115/146

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 116/146

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the binary

representation of n.

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 117/146

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote binary representation of n.

ñ The heap contains tree Bi iff bi = 1.

ñ Hence, at most blognc + 1 trees.

ñ The minimum must be contained in one of the roots.

ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 118/146

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with

different binomial trees. We can simply

merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 119/146

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 121/146

8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 122/146

8.2 Binomial Heaps

S.minimum():
ñ Find the minimum key-value among all roots.

ñ Time: O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 123/146

8.2 Binomial Heaps

S. delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 124/146

8.2 Binomial Heaps

S. decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 125/146

8.2 Binomial Heaps

S. delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).

8.2 Binomial Heaps 6. Feb. 2022

Harald Räcke 126/146

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 127/146

8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 128/146

8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).

7 24

4626

35

23 17

30

3

5241

44

18

39

min

The potential is Φ(S) = 5+ 2 · 3 = 11.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 129/146

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 130/146

8.3 Fibonacci Heaps

S.minimum()
ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 131/146

8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 132/146

8.3 Fibonacci Heaps

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).

x is inserted next to the min-pointer as
this is our entry point into the root-list.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 133/146

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 134/146

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 134/146

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23

17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxxx x

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 135/146

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.

Actual cost for delete-min()
ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)
for c ≥ c1 .

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 136/146

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 137/146

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 138/146

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 138/146

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 138/146

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 138/146

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 138/146

Fibonacci Heaps: decrease-key(handle h, v)

Marking a node can be viewed as a
first step towards becoming a root.
The first time x loses a child it is
marked; the second time it loses a
child it is made into a root.

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 139/146

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(`+1)+c(4−`) ≤ (c2−c)`+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 140/146

Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(Dn)
ñ O(1) for decrease-key.

ñ O(Dn) for delete-min.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 141/146

8.3 Fibonacci Heaps

Lemma 1

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1

The marking process is very important for the proof of
this lemma. It ensures that a node can have lost at most
one child since the last time it became a non-root node.
When losing a first child the node gets marked; when
losing the second child it is cut from the parent and
made into a root.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 142/146

8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 143/146

8.3 Fibonacci Heaps
ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 144/146

8.3 Fibonacci Heaps

Definition 2

Consider the following non-standard Fibonacci type sequence:

Fk =

1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

φ = 1
2 (1 +

√
5) denotes the golden ratio.

Note that φ2 = 1+φ.

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+∑k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 145/146

k=0: 1 = F0 ≥ Φ0 = 1

k=1: 2 = F1 ≥ Φ1 ≈ 1.61

k-2,k-1→ k: Fk = Fk−1 + Fk−2 ≥ Φk−1 + Φk−2 = Φk−2(Φ+1) = Φk
Φ2︷ ︸︸ ︷

k=2: 3 = F2 = 2+ 1 = 2+ F0

k-1→ k: Fk = Fk−1 + Fk−2 = 2+∑k−3
i=0 Fi + Fk−2 = 2+∑k−2

i=0 Fi

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 146/146

Priority Queues

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fi-
bonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial
heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps
are dealt with in Exercise 6.11.

8.3 Fibonacci Heaps 6. Feb. 2022

Harald Räcke 147/146

	Priority Queues
	Binary Heaps
	Binomial Heaps
	Fibonacci Heaps

