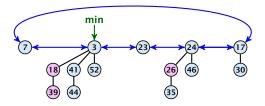
Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



6. Feb. 2022 108/127

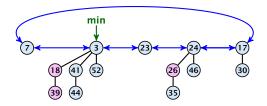
6. Feb. 2022

110/127

8.3 Fibonacci Heaps

The potential function:

- ightharpoonup t(S) denotes the number of trees in the heap.
- ightharpoonup m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- ► Every node stores a boolean value *x*. marked that specifies whether *x* is marked or not.

8.3 Fibonacci Heaps

6. Feb. 2022

109/127

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

S. minimum()

- Access through the min-pointer.
- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Amortized cost $\mathcal{O}(1)$.

Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022

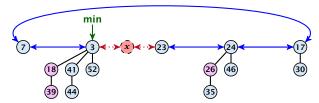
112/127

8.3 Fibonacci Heaps

x is inserted next to the min-pointer as this is our entry point into the root-list.

S. insert(x)

- ightharpoonup Create a new tree containing x.
- Insert x into the root-list.
- ▶ Update min-pointer, if necessary.



Running time:

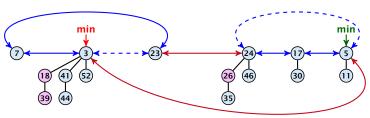
| igcup | | igcap | | igcap | igcap | Harald Räcke

- ▶ Actual cost $\mathcal{O}(1)$.
- ightharpoonup Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

8.3 Fibonacci Heaps

S. merge(S')

- Merge the root lists.
- ► Adjust the min-pointer



Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

6. Feb. 2022 113/127

8.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

• In the figure below the dashed edges are

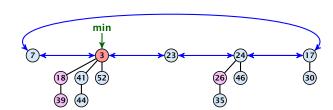
• The minimum of the left heap becomes

the new minimum of the merged heap.

replaced by red edges.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.



8.3 Fibonacci Heaps

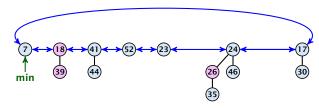
6. Feb. 2022 114/127 8.3 Fibonacci Heaps 6. Feb. 2022

115/127

 $D(\min)$ is the number of children of the node that stores the minimum.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.



Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

Harald Räcke

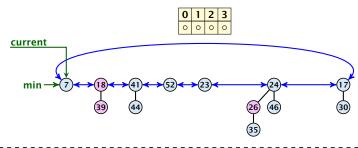
8.3 Fibonacci Heaps

6. Feb. 2022

115/127

8.3 Fibonacci Heaps

Consolidate:



During the consolidation we traverse the root list. Whenever we discover two trees that have the same degree we merge these trees. In order to efficiently check whether two trees have the same degree, we use an array that contains for every degree value d a pointer to a tree left of the current pointer whose root has degree d (if such a tree exist).

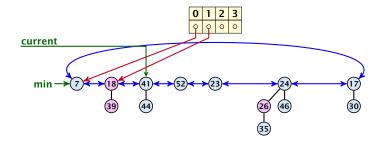
Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022 116/127

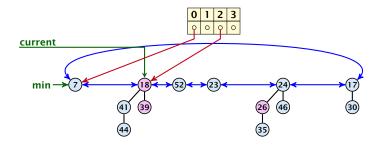
8.3 Fibonacci Heaps

Consolidate:



8.3 Fibonacci Heaps

Consolidate:



8.3 Fibonacci Heaps

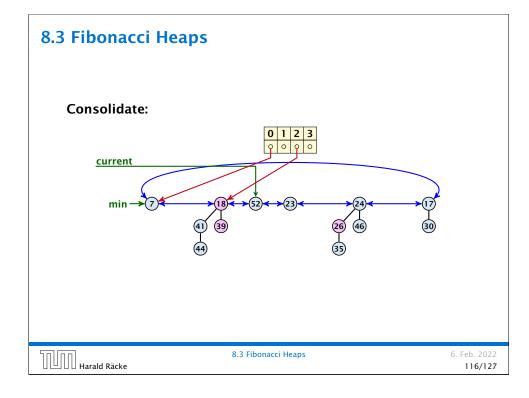
6. Feb. 2022 116/127

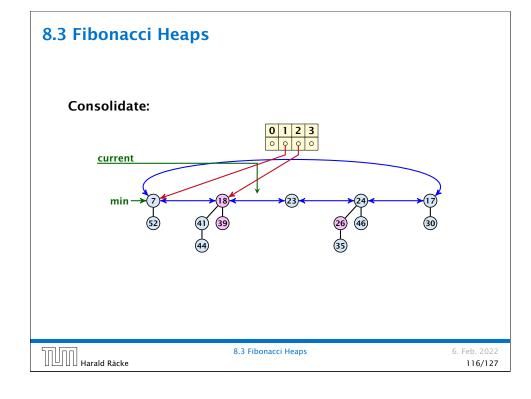
8.3 Fibonacci Heaps

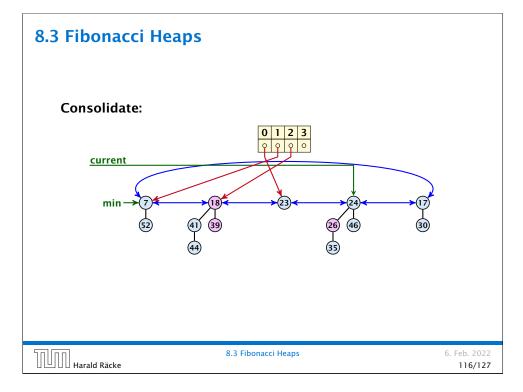
|||||||| Harald Räcke

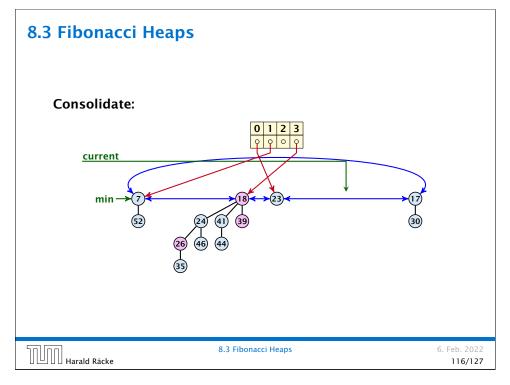
116/127

6. Feb. 2022

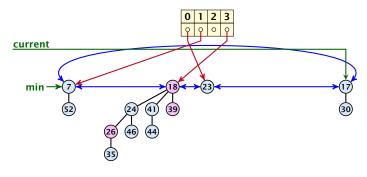








Consolidate:



∏∐∏∐ Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022 116/127

6. Feb. 2022

117/127

8.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. ${}^{l}_{i}D_{n}$ is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

 $\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$

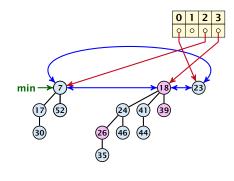
for $c \ge c_1$.

Harald Räcke

8.3 Fibonacci Heaps

8.3 Fibonacci Heaps

Consolidate:



Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022

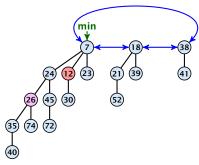
116/127

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

Fibonacci Heaps: decrease-key(handle h, v)



Case 1: decrease-key does not violate heap-property

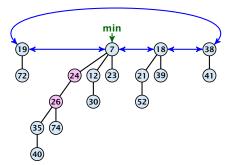
▶ Just decrease the key-value of element referenced by *h*. Nothing else to do.

∏∐∏]∐ Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022

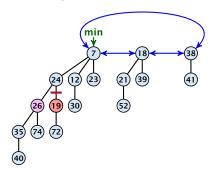
119/127



Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element *x* reference by *h*.
- ightharpoonup If the heap-property is violated, cut the parent edge of x, and make *x* into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

- \triangleright Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022

119/127

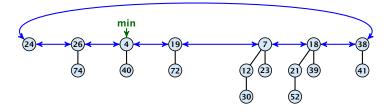
Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- ► Continue cutting the parent until you arrive at an unmarked node.

Decrease key-value of element *x* reference by *h*.

Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- \triangleright Decrease key-value of element x reference by h.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

8.3 Fibonacci Heaps

6. Feb. 2022 119/127

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- ightharpoonup Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1)$, m and m': number of if $c \geq c_2$.

t and t': number of trees before and after operation.

marked nodes before and after operation.

6. Feb. 2022

121/127

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
The first time x loses a child it is
p \leftarrow parent[x];
                                          marked; the second time it loses a
                                          child it is made into a root.
while (p is marked)
     pp \leftarrow parent[p];
     cut of p; make it into a root; unmark it;
     p \leftarrow pp;
if p is unmarked and not a root mark it;
```

Harald Räcke

8.3 Fibonacci Heaps

6. Feb. 2022

Marking a node can be viewed as a first step towards becoming a root.

120/127

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- \triangleright $\mathcal{O}(1)$ for decrease-key.
- \triangleright $\mathcal{O}(D_n)$ for delete-min.

Lemma 1

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i > 1 \end{cases}$$

The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

8.3 Fibonacci Heaps

6. Feb. 2022

123/127

8.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=0}^{k-2} s_i$$

8.3 Fibonacci Heaps

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

8.3 Fibonacci Heaps

6. Feb. 2022 124/127

8.3 Fibonacci Heaps

 $\phi=rac{1}{2}(1+\sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2=1+\phi$.

Definition 2

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1: $2 = F_1 \ge \Phi^1 \approx 1.61$
k-2,k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi^{+1}) = \Phi^k$

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

 8.3 Fibonacci Heaps
 6. Feb. 2022

 Harald Räcke
 127/127

