
7.7 Hashing

Dictionary:

ñ S. insert(x): Insert an element x.

ñ S. delete(x): Delete the element pointed to by x.

ñ S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.
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7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ |U|.
ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.
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Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅

k6

k3

∅

∅

k7

∅

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

7.7 Hashing 6. Feb. 2022

Harald Räcke 76/156



Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

Such a hash function h is called a perfect hash function for set S.
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Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.
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Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).

Lemma 1

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].
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Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.
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Collisions

− 3 −2 −1 1 2 3

1

2

3

4

x

f(x) e−x

1− x

The inequality 1− x ≤ e−x is derived by stopping the

Taylor-expansion of e−x after the second term.
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Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.
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Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

∅

∅

∅

∅

k1 k4 ∅

k5 k2 k7 ∅

k3 ∅

k8 k6 ∅
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.
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Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined.

The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .
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Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
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Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .
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Hashing with Chaining

Disadvantages:

ñ pointers increase memory requirements

ñ pointers may lead to bad cache efficiency

Advantages:

ñ no à priori limit on the number of elements

ñ deletion can be implemented efficiently

ñ by using balanced trees instead of linked list one can also

obtain worst-case guarantees.
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Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2), . . . .

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.
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Open Addressing

Choices for h(k, j):
ñ Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

ñ Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

ñ Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).
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Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 2

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)
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Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 3

Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
( 1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

( 1
1−α

)
−α
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Double Hashing

ñ Any probe into the hash-table usually creates a cache-miss.

Lemma 4

Let D be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
( 1

1−α
)

D− ≈ 1
1−α
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Open Addressing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20
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Open Addressing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

α

#probes

L− Q− D−

L+ Q+ D+
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Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open

Addressing scheme.

ñ The probe sequence h(k,0), h(k,1), h(k,2), . . . is equally

likely to be any permutation of 〈0,1, . . . , n− 1〉.
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .
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Analysis of Idealized Open Address Hashing

E[X]

=
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .
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Analysis of Idealized Open Address Hashing

∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

1 2 3 4 5 6 7

i

Pr[X = i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)
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Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .
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Analysis of Idealized Open Address Hashing
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Deletions in Hashtables

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.
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Deletions in Hashtables

ñ Simply removing a key might interrupt the probe sequence of

other keys which then cannot be found anymore.

ñ One can delete an element by replacing it with a
deleted-marker.

ñ During an insertion if a deleted-marker is encountered an
element can be inserted there.

ñ During a search a deleted-marker must not be used to
terminate the probe sequence.

ñ The table could fill up with deleted-markers leading to bad

performance.

ñ If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.
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Deletions for Linear Probing

ñ For Linear Probing one can delete elements without using

deletion-markers.

ñ Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.
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Deletions for Linear Probing

Algorithm 37 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.
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Universal Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .
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Universal Hashing

Definition 5

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .
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Universal Hashing

Definition 6

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.
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Universal Hashing

Definition 7

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .
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Universal Hashing

Definition 8

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
µ
n`

,

where the probability is w. r. t. the choice of a random

hash-function from set H .
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Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 9

The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.
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is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.7 Hashing 6. Feb. 2022

Harald Räcke 111/156



Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 9

The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.7 Hashing 6. Feb. 2022

Harald Räcke 111/156



Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).
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Universal Hashing
ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ty − ay (mod p)
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Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.
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Universal Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .
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Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[
tx mod n=h1∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty ) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.
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Universal Hashing

Definition 10

Let d ∈ N; q ≥ (d+ 1)n be a prime; and let ā ∈ {0, . . . , q − 1}d+1.

Define for x ∈ {0, . . . , q − 1}

hā(x) :=
( d∑

i=0

aixi mod q
)

mod n .

Let Hd
n := {hā | ā ∈ {0, . . . , q − 1}d+1}. The class H d

n is

(e, d+ 1)-independent.

Note that in the previous case we had d = 1 and chose ad ≠ 0.
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Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
( d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.
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Universal Hashing

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`a hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of A` we choose our polynomial

by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , x`.
We have

|B1| · . . . · |B`|
possibilities to do this (so that hā(xi) = ti).
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Universal Hashing
Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.
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Universal Hashing

Now, we choose d− ` + 1 other inputs and choose their value

arbitrarily. We have qd−`+1 possibilities to do this.

Therefore we have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.
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Universal Hashing

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1

≤ (
q+n
n )

`

q`
≤
(q +n
q

)` · 1

n`

≤
(
1+ 1

`

)` · 1

n`
≤ e
n`

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.
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The last step followed from q ≥ (d+ 1)n, and ` ≤ d+ 1.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .
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Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.
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Perfect Hashing

k1

k2
k3

k4
k5

k6
k7

k8

∅ m2 m3 ∅ ∅ m6 ∅ m8

U
universe
of keys

S (actual keys)

k1 k6 ∅ k4 ∅ ∅ ∅ k3 k2 ∅ ∅ ∅ k8 k5 ∅ ∅ k7 ∅

∑
imi =m

m2
2 m2

3 m2
6 m2

8
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Perfect Hashing

The total memory that is required by all hash-tables is O(∑jm2
j ).

Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level. Since we use universal hashing we have

= 2

(
m
2

)
1
m
+m = 2m− 1 .
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Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m), because with probability at least 1/2 a random

function from a universal family will have this property.

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket. A random function hj is

collision-free with probability at least 1/2. We need O(mj) to test

this.

We only need that the hash-functions are chosen from a universal

family!!!
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Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time

in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.
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Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x

7.7 Hashing 6. Feb. 2022

Harald Räcke 129/156



Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x

7.7 Hashing 6. Feb. 2022

Harald Räcke 129/156



Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

7.7 Hashing 6. Feb. 2022

Harald Räcke 129/156



Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing

Algorithm 38 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: steps← steps+1
9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)
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Cuckoo Hashing

ñ We call one iteration through the while-loop a step of the

algorithm.

ñ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

ñ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.
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Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?
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Cuckoo Hashing: Insert

T1 T2

x = x1
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Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

ñ s − 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is “linked forward” to some cell on the right.

ñ The rightmost cell is “linked backward” to a cell on the left.

ñ One link represents key x; this is where the counting starts.
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Cuckoo Hashing

A cycle-structure is active if for every key x` (linking a cell pi from

T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.
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Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at

most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?
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Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

ñ There are at most s2 possibilities where to attach the forward

and backward links.

ñ There are at most s possibilities to choose where to place key

x.

ñ There are ms−1 possibilities to choose the keys apart from x.

ñ There are ns−1 possibilities to choose the cells.
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Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s

= µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ε

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ε)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.
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Cuckoo Hashing

Now, we analyze the probability that a phase is not successful

without running into a closed cycle.

7.7 Hashing 6. Feb. 2022

Harald Räcke 140/156



Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7

Sequence of visited keys:

x = x1, x2, x3, x4, x5, x6, x7, x3, x2, x1 = x, x8, x9, . . .
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Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 11

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.
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Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → ·· · → xi → xr → xr−1 → ·· · → x1 → xi+1 → ·· · → xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → ·· · → xi or sub-sequence

x1 → xi+1 → ·· · → xj has at least p+2
3 elements.
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Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

ñ s + 1 different cells (alternating btw. cells from T1 and T2).

ñ s distinct keys x = x1, x2, . . . , xs , linking the cells.

ñ The leftmost cell is either from T1 or T2.
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Cuckoo Hashing

A path-structure is active if for every key x` (linking a cell pi from

T1 and a cell pj from T2) we have

h1(x`) = pi and h2(x`) = pj

Observation:

If a phase takes at least t steps without running into a cycle there

must exist an active path-structure of size (2t + 2)/3.
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Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size s
is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
(
m
n

)s−1

≤ 2µ2
(

1
1+ ε

)s−1

Plugging in s = (2t + 2)/3 gives

≤ 2µ2
(

1
1+ ε

)(2t+2)/3−1

= 2µ2
(

1
1+ ε

)(2t−1)/3
.
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Cuckoo Hashing

We choose maxsteps ≥ 3`/2+ 1/2.

Then the probability that a

phase terminates unsuccessfully without running into a cycle is at

most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3 ]

≤ Pr[∃ active path-structure of size at least ` + 1]

≤ Pr[∃ active path-structure of size exactly ` + 1]

≤ 2µ2
( 1

1+ ε
)` ≤ 1

m2

by choosing ` ≥ log
( 1

2µ2m2

)
/log

( 1
1+ε

) = log
(
2µ2m2

)
/log

(
1+ ε)

This gives maxsteps = Θ(logm).
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Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
( 1
m2

)

and

Pr[unsuccessful | no cycle] ≤ O
( 1
m2

)

Observe that

Pr[successful]

= Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

for a suitable constant c > 0.
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Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

∑

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

∑

t≥1

2µ2
( 1

1+ ε
)(2t−1)/3 = 1

c

∑

t≥0

2µ2
( 1

1+ ε
)(2(t+1)−1)/3

= 2µ2

c(1+ ε)1/3
∑

t≥0

( 1
(1+ ε)2/3

)t = O(1) .

This means the expected cost for a successful phase is constant

(even after accounting for the cost of the incomplete step that

finishes the phase).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is∑
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is O(m) · O(p) = O(1).
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Formal Proof

Let Yi denote the event that the i-th rehash occurs and does not

lead to a valid configuration (i.e., one of the m+ 1 insertions

fails):

Pr[Yi|Zi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤ Pr[∧i−1
j=0Yj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi ] = E[steps | phase successful] · Pr[phase sucessful]

+maxsteps ·Pr[not sucessful] = O(1) .

The 0-th (re)hash is the initial
configuration when doing the
insert.
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The expected cost for all rehashes is

E
[∑

i

∑
s ZiX

s
i

]

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
[∑

i

∑
s ZiX

i
s

]
=
∑
i

∑
s E[Zi] · E[Xis]

≤ O(m) ·
∑
i p
i

≤ O(m) · p
1− p

= O(1) .
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Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure or

cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.
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Cuckoo Hashing

How do we make sure that n ≥ (1 + ε)m?

ñ Let α := 1/(1+ ε).

ñ Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.
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Cuckoo Hashing

Lemma 12

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of

keys/total number of hash-table slots) is at most 1
2(1+ε) .

The 1/(2(1+ ε)) fill-factor comes from the fact that the total hash-table
is of size 2n (because we have two tables of size n); moreover m ≤
(1+ ε)n.
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