13.3 Highest Label

```
Algorithm 1 highest-label( }G,s,t
    initialize preflow
    foreach }u\inV\{s,t}\mathrm{ do
        u.current-neighbour }\leftarrowu.neighbour-list-head
    while }\exists\mathrm{ active node }u\mathrm{ do
        select active node u}\mathrm{ with highest label
        discharge(u)
```


13.3 Highest Label

Since a discharge-operation is terminated by a deactivating push this gives an upper bound of $\mathcal{O}\left(n^{3}\right)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Question:

How do we find the next node for a discharge operation?

13.3 Highest Label

Lemma 6
When using highest label the number of deactivating pushes is only $\mathcal{O}\left(n^{3}\right)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ.

This means, after a deactivating push from u a relabel is required to make u active again.

Hence, after n deactivating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most $n(\#$ relabels +1$)=\mathcal{O}\left(n^{3}\right)$.

13.3 Highest Label

Maintain lists $L_{i}, i \in\{0, \ldots, 2 n\}$, where list L_{i} contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_{k}, L_{k-1}, \ldots, L_{0}$, (in that order) until you find a non-empty list.

Unless the last (deactivating) push was to s or t the list $k-1$ must be non-empty (i.e., the search takes constant time).

13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

$$
\mathcal{O}\left(n^{3}\right)+n(\# \text { deactivating-pushes-to-s-or-t })
$$

Lemma 7

The number of deactivating pushes to s or t is at most $\mathcal{O}\left(n^{2}\right)$.

With this lemma we get
Theorem 8
The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}\left(n^{3}\right)$ 。

13.3 Highest Label

Proof of the Lemma.

- We only show that the number of pushes to the source is at most $\mathcal{O}\left(n^{2}\right)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v)=n+1$) made a deactivating push to the source there needs to be another node whose label is increased from $\leq n+1$ to $n+2$ before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold $n+2$ at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most $\mathcal{O}\left(n^{2}\right)$.
\square

