_________________________ |

1 Note that the cases do not cover all pos-i
6.2 Master Theorem ! sibilities. !
Lemma 1
Lleta>1,b>1 and e > 0 denote constants. Consider the
recurrence

T(n) = aT(%) + f(n) .

Case 1.
If f(n) = O(nlo8r@ =€) then T(n) = O(n'o8r a),

Case 2.
If f(n) = O©(n'°% (@ 1ogk n) then T(n) = O(M°8 41ogk* 1 n
k > 0.

~

1]

Case 3.
If f(n) = Q(n'og@+€y and for sufficiently large n
af(%) < cf(n) for some constantc <1 then T(n) = O(f(n)).

m Harald Racke 11/26

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b'e, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem
Harald Ricke 12/26

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

fmn)

af(y)

a’f(4z)

olojolololololololololololo [o M T

nlogh a

m 6.2 Master Theorem
Harald Ricke 13/26

6.2 Master Theorem

This gives
log, n—1 ' n
T(n) =nlosra+ alf<ﬁ> :

i=0

m 6.2 Master Theorem
Harald Ricke 14/26

Case 1. Now suppose that f(n) < cnlo8ra-c,

log, n—1 n
Ton) —nloma =3 aif(])
i=0
logyn-1 n \logya—c
se 3 a(y)
i=0
log, n—-1)
pillogy a—€) _ pei(plogyay—i — peig—i :CnIOgha_e Z (be)l
i=0

Cnlogha—E(belogbn _ 1)/(be -1)

_ Cnlogbafe(ne _ 1)/(b6 -1)

ﬁnlogha(ne _ 1)/(n€)

Hence,

+ 1>n10gb(a) = T(n) = O(noer a),

‘m 6.2 Master Theorem
Harald Ricke 15/26

Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
Ton) —nloma =3 aif(])
i=0
log, n—1 log, a
lﬁ &b
<c > a i
i=0
logy n—1
=cnlo&ra 3

Hence,

T(n) = O(n'*#%log,n) | T(n) = O(nB2logn).

‘m 6.2 Master Theorem
Harald Ricke 16/26

Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
T(n) -nlogra = alf(ﬁ>
i=0
log, n—1 logy, a
se S al(%)
=C a i
i=0
log, n—1
=cnlo®ra]
i=0

cnl® 2log, n

Hence,

T(n) = Q(n'%%log,n) |= T(n) = Q82 logn).

‘m 6.2 Master Theorem
Harald Ricke 17/26

Case 2. Now suppose that f(n) < cnl°8 2 (log, (n))k.

log, n—1
T(n)—nlsra =% aif<£)
i=0
log, n—-1

IA

()

&N
—
T3
N———

5}
oQ
iy

Q

—
—
o
a9
Nyl
—
3|
N———
N———
=

bﬁ k
n:h£=>€:logbn] = cnlogra Z <logb (ﬁ))

-1
Cnlogba Z (# _ l)k
i=0

{
— cnlogr llz ik~ 1 gkt
i=1

~ %nlogba€k+l ‘ - T(n) _ O(nlOgbaIng+1n).

‘m 6.2 Master Theorem
Harald Ricke 18/26

Case 3. Now suppose that f(n) = dn'°8 2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a'f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

logy, n—1 n
Ten) -l =5 atf(57)

i=0

log, n—1

< > cif(n) +omona)
i=0
n+ 1
q<1 Z?:Oqlzl}?qlgﬁ Sl_cf(n)+0(n10gba)

T(n) <0O0(f(n))

> T(n) = 0(f(n).|

' Where did we use f(n) > Q(nlogpateyr :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01101T01 A
110000101100101]1] B
101 1001000O0

This gives that two n-bit integers can be added in time O(n).

6.2 Master Theorem

m Harald Racke

19/26

6.2 Master Theorem

‘_I—I_Hm Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001

| 100010
o e memedze it 0000000
L _atmostmins<2nbis. 1 0001000

10111011

b c This is also nown as the “school :
method” for multiplying integers. |

Time requirement:
» Computing intermediate results: O(nm).

» Adding m numbers of length < 2n: O((m + n)m) = O(nm).

6.2 Master Theorem

m Harald Racke

21/26

20/26
Example: Multiplying Two Integers
A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.
B By l X | Aj Ao
Then it holds that
A=A -2%7 +Apand B =B - 2% + By
Hence,
A-B=AB-2" + (A1By + AgBy) - 22 + AgBy
m 6.2 Master Theorem
Harald Ricke 22/26

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B] =1 then O(1)

2 return ag - by O(1)

3: split A into Ag and A; On)

4: split B into By and B, On)

5: Z» — mult(Aq,B1) T(%)

6: Z1 — mult(Ay, Bg) + mult(Ag, B1) ZT(%) +0O0n)
7: Zo — mult(Ag, Bg) T(%)

8 return Zo - 2"+ 7, - 2% + Zg O(n)

We get the following recurrence:

T(n) = 4T(§) +OMm) .

6.2 Master Theorem

m Harald Racke 23/26

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(};) + f(n).
> Case 1: f(n) = O(nlosra—c) T(n) = O(n'ogra)
> Case 2: f(n) = O(nl°8ralogkn) T(n) = OM% a10gk* ! n)
> Case 3: f(n) = Q(nlosra+e) T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n?¢€) = O(nlogra—c),

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.

6.2 Master Theorem

‘_I—I_Hm Harald Racke

24/26

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + ApBy =Zy =12
—r —
= (Ap + A1) - (Bop + B1) — A1B1 — ApBo

Hence,
Algorithm 4 mult(A, B)
1: if |[A] = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A; On)
4: split B into By and B, On)
"A more precise | | 50 Z2 — mult(Ay, B1) T(3)
! (correct) analysis | | 6: Zg — mult(Ag, Bg) T(%)
omping 21| 7 21 = mult(Ao + Ay, B+ B1) = Ze — Zo | T(H) + O(n)
1 needs time '| 8 return Zp - 2" + 71 - 22 + Z O(n)

(T(F +1)+0(n).
I

6.2 Master Theorem

m Harald Ricke 25/26

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(};) + f(n).
> Case 1: f(n) = O(nlosra—c) T(n) = ©(n'ogra)
> Case 2: f(n) = O(nl°8ralogkn) T(n) = OM% a10gk* ! n)
> Case 3: f(n) = Q(n'o8 4+ T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_

A huge improvement over the “school method”.

6.2 Master Theorem

m Harald Racke

26/26

	Master Theorem

