7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m Harald Racke 50/64

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L;| denote the number of elements in the “express lane”, and
|Lo| = n the number of all elements (ignoring dummy elements).

Worst case search time: [L1| + % (ignoring additive constants)

Choose |L1| = /n. Then search time ©(\/n).

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)
> Find the largest item in list Ly that is smaller than x. At most
|Ly| + 2 steps.
> Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At

Li_
most [‘L‘kf] fl]] + 2 steps.

> At most |Li| + Z'le Lfil + 3(k + 1) steps.

m 7.5 Skip Lists
Harald Racke 52/64

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘f”

k

=7, and,

il

hence, Ly ~ v *n.

Worst case running time is: Orkn + kr).
Choose v = n%1., Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
=(k+ 1)nk1

Choosing k = ©(logn) gives a logarithmic running time.

m 7.5 Skip Lists
Harald Racke 53/64

7.5 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require a
lot of re-organisation.

Use randomization instead!

m 7.5 Skip Lists
Harald Racke 54/64

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.

m 7.5 Skip Lists
Harald Racke

55/64

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Harald Racke 56/64

High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time O (logn) with
high probability if for any constant « the running time is at most
©(logn) with probability at least 1 — .

nO(

Here the O-notation hides a constant that may depend on «.

m 7.5 Skip Lists
Harald Réacke 57/64

High Probability

Suppose there are polynomially many events Ej, Eo,...,Ep, £ = n¢
each holding with high probability (e.g. E; may be the event that
the i-th search in a skip list takes time at most O (log n)).

Then the probability that all E; hold is at least

PI‘[E]/\---/\Eg]ZI—Pr[El\/---VEL)]
>1-nc-n¢«

=1-n-¢«

This means Pr[E; A - - - A Ep] holds with high probability.

m 7.5 Skip Lists
Harald Racke 58/64

7.5 Skip Lists

Lemma 2
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O (logn) with high probability (w. h. p.).

m 7.5 Skip Lists
Harald Réacke 59/64

7.5 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.
We show that w.h.p:

» A “long” search path must also go very high.

» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

m 7.5 Skip Lists
Harald Racke 60/64

7.5 Skip Lists

Estimation for Binomial Coefficients

(8= ()= (%)

n\ n! _n-...-(n—k+1)><n)k
k)] k'-(m—-k) k-...-1 ~\k
ny n (m—k+1) nk nk. k&

k) k! T k! kk.k

7.5 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above L.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that tell
you to go up) in z trials.

m 7.5 Skip Lists
Harald Réacke 62/64

7.5 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
S<k> a2 §<23k> "
2e(B +)\ K x
S(28) "
now choosing 3 = 6 gives
<42a
<
64«

k
) n%<n«
for ¢ = 1.

m 7.5 Skip Lists
Harald Racke 63/64

7.5 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

<n % yn D

This means, the search requires at most z steps, w. h. p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

m 7.5 Skip Lists
Harald Racke 65/64

	Skip Lists

