SS 2022

Efficient Algorithms and Data Structures II

Harald Räcke

Fakultät für Informatik

TU München
https://www.mood7e.tum.de/course/view.php?id=79534

Summer Term 2022

Part I

Organizational Matters

Part I

Organizational Matters

- Modul: IN2004

Part I

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"

Part I

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points

Part I

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Wed 10:15-11:45 (Room 00.13.009A)
Fri 10:15-11:45 (MS HS3)

Part I

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Wed 10:15-11:45 (Room 00.13.009A)
Fri 10:15-11:45 (MS HS3)

- Webpage:
https://www.moodle.tum.de/course/view.php?id=79534

The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (per appointment)

Tutorials

- Tutor:
- Omar AbdelWanis
- omar.abdelwanis@tum.de
- per appointment
- Room: 03.11.018
- Time: Mon 14:00-16:00

Assessment

- In order to pass the module you need to pass an exam.

Assessment

- In order to pass the module you need to pass an exam.
- Exam:

Assessment

- In order to pass the module you need to pass an exam.
- Exam:
- 2.5 hours

Assessment

- In order to pass the module you need to pass an exam.
- Exam:
- 2.5 hours
- There are no resources allowed, apart from a hand-written piece of paper (A4).

Assessment

- In order to pass the module you need to pass an exam.
- Exam:
- 2.5 hours
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

Assessment

- Assignment Sheets:

Assessment

- Assignment Sheets:
- An assignment sheet is usually made available on Monday on the module webpage.

Assessment

- Assignment Sheets:
- An assignment sheet is usually made available on Monday on the module webpage.
- The first one will be out on Monday, 2 May.

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

2 Literatur

景 V．Chvatal：
Linear Programming，
Freeman， 1983
國 R．Seidel：
Skript Optimierung， 1996
嗇 D．Bertsimas and J．N．Tsitsiklis：
Introduction to Linear Optimization，
Athena Scientific， 1997
专
Vijay V．Vazirani：
Approximation Algorithms， Springer 2001

David P. Williamson and David B. Shmoys:
The Design of Approximation Algorithms, Cambridge University Press 2011
圊 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi:
Complexity and Approximation, Springer, 1999

Part II

Linear Programming

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736$ €

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer $\quad \Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776 €$

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776 €$
- 12 barrels ale, 28 barrels beer

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale $\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776 €$
- 12 barrels ale, 28 barrels beer
$\Rightarrow 800 €$

Brewery Problem

Linear Program

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form LPs

LP in standard form:

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n
\end{aligned}
$$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

$$
\begin{array}{|lll}
\hline \max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n \\
& \geq 0
\end{array}
$$

$$
\begin{array}{rrll}
\hline \max & c^{T} x & \\
\text { s.t. } & A x & =b \\
& x & \geq 0 \\
&
\end{array}
$$

Standard Form LPs

Original LP

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form LPs

Original LP

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form

Add a slack variable to every constraint.

$$
\begin{array}{rlrl}
\max 13 a & +23 b & & \\
& =480 \\
\text { s.t. } & +15 b+s_{c} & & \\
4 a & +4 b & & +s_{h} \\
35 a & +20 b & & \\
a & =160 \\
a & , b & s_{m} & =1190 \\
& , s_{h}, s_{m} & \geq 0
\end{array}
$$

Standard Form LPs

There are different standard forms:
standard form

```
max c}\mp@subsup{c}{}{T}
    s.t. }Ax=
    x \geq 0
```


Standard Form LPs

There are different standard forms:
standard form

$$
\begin{array}{rrl}
\max & c^{T} x & \\
\text { s.t. } & A x & =b \\
& x & \geq 0
\end{array}
$$

$$
\begin{array}{rr}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Standard Form LPs

There are different standard forms:
standard form
standard
maximization form

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

$$
\begin{array}{rrl}
\min & c^{T} x & \\
\text { s.t. } & A x & =b \\
& x & \geq 0
\end{array}
$$

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

standard
maximization form

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

\min	$c^{T} x$
s.t.	$A x$
	$x \geq b$
	x

standard minimization form

\min	$c^{T} x$	
s.t.	$A x$	$\geq b$
	x	≥ 0

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Longrightarrow \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned} ~
\end{aligned}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \geq 12 \Rightarrow a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \geq 12 \Rightarrow a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \geq 12 \Rightarrow a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \varnothing$ then the LP is called feasible (erfüllbar).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \varnothing$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \varnothing$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \varnothing$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \varnothing$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)
- $c^{T} x>-\infty$ for all $x \in P$ (for minimization problems)

Definition 2

Given vectors/points $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}, \sum \lambda_{i} x_{i}$ is called

- linear combination if $\lambda_{i} \in \mathbb{R}$.
- affine combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$.
- convex combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$ and $\lambda_{i} \geq 0$.
- conic combination if $\lambda_{i} \in \mathbb{R}$ and $\lambda_{i} \geq 0$.

Note that a combination involves only finitely many vectors.

Definition 3

A set $X \subseteq \mathbb{R}^{n}$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

Definition 4

Given a set $X \subseteq \mathbb{R}^{n}$.

- $\operatorname{span}(X)$ is the set of all linear combinations of X (linear hull, span)
- $\operatorname{aff}(X)$ is the set of all affine combinations of X (affine hull)
- $\operatorname{conv}(X)$ is the set of all convex combinations of X (convex hull)
- cone (X) is the set of all conic combinations of X (conic hull)

Definition 5

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Definition 5

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Lemma 6

If $P \subseteq \mathbb{R}^{n}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex then also

$$
Q=\{x \in P \mid f(x) \leq t\}
$$

Dimensions

Definition 7

The dimension $\operatorname{dim}(A)$ of an affine subspace $A \subseteq \mathbb{R}^{n}$ is the dimension of the vector space $\{x-a \mid x \in A\}$, where $a \in A$.

Definition 8
The dimension $\operatorname{dim}(X)$ of a convex set $X \subseteq \mathbb{R}^{n}$ is the dimension of its affine hull aff (X).

Definition 9

A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 9

A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 10
A set $H^{\prime} \subseteq \mathbb{R}^{n}$ is a (closed) halfspace if $H=\left\{x \mid a^{T} x \leq b\right\}$, for $a \neq 0$.

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^{n}$ that is the convex hull of a finite set of points, i.e., $P=\operatorname{conv}(X)$ where $|X|=c$.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\} .
$$

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\} .
$$

Definition 13
A polyhedron P is bounded if there exists B s.t. $\|x\|_{2} \leq B$ for all $x \in P$.

Definitions

Theorem 14
P is a bounded polyhedron iff P is a polytop.

Definition 15

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 15

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 15

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 17
Let $P \subseteq \mathbb{R}^{n}$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\operatorname{dim}(e)=1$.
- a face F is a facet of P if F is a face and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19
Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19
Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Lemma 20
A vertex is also an extreme point.

Observation
 The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$

Convex Sets

Case 1. $\left[\exists j\right.$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- as $\lambda \rightarrow \infty, c^{T}(x+\lambda d) \rightarrow \infty$ as $c^{T} d>0$

Algebraic View

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m};

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x
$$

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}
$$

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i} \neq b_{1}
$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists $B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists $B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.
$x \in \mathbb{R}^{n}$ with $A_{B} x_{B}=b$ and $x_{j}=0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least $n-m$ of the x_{i} 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

Definition 25
For a general LP (max $\left.\left\{c^{T} x \mid A x \leq b\right\}\right)$ with n variables a point x is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.

Algebraic View

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

- Given a basis B we can compute the associated basis solution by calculating $A_{B}^{-1} b$ in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

4 Simplex Algorithm

$$
\begin{array}{rlrl}
\hline \max 13 a+23 b & & \\
\text { s.t. } \quad 5 a+15 b+s_{c} & & =480 \\
4 a+4 b & & =160 \\
35 a+20 b & & \\
a, \quad b, s_{c}, s_{h}, s_{m} & \geq 0 \\
a & \geq 1190
\end{array}
$$

4 Simplex Algorithm

$$
\begin{array}{rlrl}
\hline \max 13 a+23 b & & \\
\text { s.t. } \quad 5 a+15 b+s_{c} & =480 \\
4 a+4 b & =160 \\
35 a+20 b & +s_{h} & & =1190 \\
a, b, s_{c}, s_{h}, s_{m} & \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max Z \\
& 13 a+23 b \\
& -Z=0 \\
& 5 a+15 b+s_{c} \\
& =480 \\
& 4 a+4 b+s_{h}=160 \\
& 35 a+20 b+s_{m}=1190 \\
& a, \quad b, s_{c}, s_{h}, s_{m} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ $-Z$ | $=0$ | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $\left.\begin{array}{rl}13 a+23 b & -Z\end{array}\right)=0$ | | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- choose variable to bring into the basis

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ | $-Z$ | $=0$ |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $\left.\begin{array}{rl}13 a+23 b & -Z\end{array}\right)=0$ | | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{m}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ | $-Z$ | $=0$ |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{m}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ $-Z$ | $=0$ | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ $-Z$ | $=0$ | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b+s_{h}$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, \quad b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

basis $=\left\{s_{c}, s_{h}, s_{m}\right\}$
$a=b=0$
$Z=0$
$s_{C}=480$
$s_{h}=160$
$s_{m}=1190$

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 \boldsymbol{b}$ $-Z$ | $=0$ | |
| $5 a+15 \boldsymbol{b}+s_{c}$ | | $=480$ |
| $4 a+4 \boldsymbol{b}+s_{h}$ | | $=160$ |
| $35 a+20 \boldsymbol{b}$ | $+s_{m}$ | $=1190$ |
| $a, \quad \boldsymbol{b}, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- Choose variable with coefficient >0 as entering variable.

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- Choose variable with coefficient >0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 \boldsymbol{b}$ | | $=0$ |
| $5 a+15 \boldsymbol{b}+s_{c}$ | | $=480$ |
| $4 a+4 \boldsymbol{b}+s_{h}$ | | $=160$ |
| $35 a+20 \boldsymbol{b}$ | $+s_{m}$ | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- Choose variable with coefficient >0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining $A x=b$ we need e.g. to set $s_{c}=480-15 \theta$.

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $\left.\begin{array}{rl}13 a+23 b & -Z\end{array}\right)=0$ | | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- Choose variable with coefficient >0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining $A x=b$ we need e.g. to set $s_{C}=480-15 \theta$.
- Choosing $\theta=\min \{480 / 15,160 / 4,1190 / 20\}$ ensures that in the new solution one current basic variable becomes 0 , and no variable goes negative.
$\max Z$

$$
\begin{aligned}
13 a+23 b-Z & =0 \\
5 a+15 b+s_{c} & =480 \\
4 a+4 b+s_{h}+s_{m} & =160 \\
35 a+20 b+b, s_{c}, s_{h}, s_{m} & \geq 0 \\
a, \quad & \geq 1190
\end{aligned}
$$

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

- Choose variable with coefficient >0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining $A x=b$ we need e.g. to set $s_{c}=480-15 \theta$.
- Choosing $\theta=\min \{480 / 15,160 / 4,1190 / 20\}$ ensures that in the new solution one current basic variable becomes 0 , and no variable goes negative.
- The basic variable in the row that gives $\min \{480 / 15,160 / 4,1190 / 20\}$ becomes the leaving variable.

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ $-Z$ | $=0$ | |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b+s_{h}$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 \boldsymbol{b}$ | $-Z$ | $=0$ |
| $5 a+15 \boldsymbol{b}+s_{c}$ | | $=480$ |
| $4 a+4 \boldsymbol{b}+s_{h}$ | | $=160$ |
| $35 a+20 \boldsymbol{b}$ | | $=1190$ |
| $a, b, s_{m}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Substitute $b=\frac{1}{15}\left(480-5 a-s_{C}\right)$.

$\max Z$

$$
\begin{aligned}
13 a+23 \boldsymbol{b}-Z & =0 \\
5 a+15 \boldsymbol{b}+s_{c} & =480 \\
4 a+4 \boldsymbol{b}+s_{h}+s_{m} & =160 \\
35 a+20 \boldsymbol{b} & =1190 \\
a, \quad \boldsymbol{b}, s_{c}, s_{h}, s_{m} & \geq 0
\end{aligned}
$$

Substitute $b=\frac{1}{15}\left(480-5 a-s_{c}\right)$.

$$
\begin{aligned}
& \max Z \\
& \frac{16}{3} a \quad-\frac{23}{15} s_{c} \\
& \frac{1}{3} a+b+\frac{1}{15} s_{c} \\
& \frac{8}{3} a \quad-\frac{4}{15} s_{c}+s_{h} \\
& \frac{85}{3} a-\frac{4}{3} s_{c}+s_{m}=550 \\
& a, b, s_{c}, s_{h}, s_{m} \geq 0 \\
& -Z=-736 \\
& =32 \\
& =32 \\
& \max Z \\
& =550 \\
& \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

$$
\begin{aligned}
& \text { basis }=\left\{b, s_{h}, s_{m}\right\} \\
& a=s_{c}=0 \\
& Z=736 \\
& b=32 \\
& s_{h}=32 \\
& s_{m}=550
\end{aligned}
$$

$\max Z$

$$
\begin{array}{rlrl}
\frac{16}{3} a-\frac{23}{15} s_{c} & -Z & =-736 \\
\frac{1}{3} a+b+\frac{1}{15} s_{c} & & 32 \\
\frac{8}{3} a- & -\frac{4}{15} s_{c}+s_{h} & 32 \\
\frac{85}{3} a- & -\frac{4}{3} s_{c}+s_{m} & & =550 \\
a, b, \quad s_{c}, s_{h}, s_{m} & \geq 0
\end{array}
$$

$$
\begin{array}{rlrl}
\max Z & & \\
\begin{array}{rlr}
\frac{16}{3} \boldsymbol{a}-\frac{23}{15} s_{c} & =-736 \\
\frac{1}{3} \boldsymbol{a}+b+\frac{1}{15} s_{c} & & =32 \\
\frac{8}{3} \boldsymbol{a} & -\frac{4}{15} s_{c}+s_{h} & \\
\frac{85}{3} \boldsymbol{a}-\frac{4}{3} s_{c}+s_{m} & & =550 \\
\boldsymbol{a}, \boldsymbol{b}, s_{c}, s_{h}, s_{m} & \geq 0
\end{array}
\end{array}
$$

$$
\text { basis }=\left\{b, s_{h}, s_{m}\right\}
$$

$$
a=s_{c}=0
$$

$$
Z=736
$$

$$
b=32
$$

$$
s_{h}=32
$$

$$
s_{m}=550
$$

Choose variable a to bring into basis.

$$
\begin{array}{rlrl}
\max Z & & \\
\qquad \begin{aligned}
\frac{16}{3} \boldsymbol{a}-\frac{23}{15} s_{c} & =-736 \\
\frac{1}{3} \boldsymbol{a}+b+\frac{1}{15} s_{c} & \\
\frac{8}{3} \boldsymbol{a}-\frac{4}{15} s_{c}+s_{h} & \\
\frac{85}{3} \boldsymbol{a}-\frac{4}{3} s_{c}+s_{m} & =32 \\
\boldsymbol{a}, b, s_{c}, s_{h}, s_{m} & \geq 0
\end{aligned}
\end{array}
$$

$$
\text { basis }=\left\{b, s_{h}, s_{m}\right\}
$$

$$
a=s_{c}=0
$$

$$
Z=736
$$

$$
b=32
$$

$$
s_{h}=32
$$

$$
s_{m}=550
$$

Choose variable a to bring into basis.
Computing min $\{3 \cdot 32,3 \cdot 32 / 8,3 \cdot 550 / 85\}$ means pivot on line 2 .

Choose variable a to bring into basis.
Computing $\min \{3 \cdot 32,3 \cdot 32 / 8,3 \cdot 550 / 85\}$ means pivot on line 2. Substitute $a=\frac{3}{8}\left(32+\frac{4}{15} s_{c}-s_{h}\right)$.

$$
\begin{aligned}
\max Z & \\
\frac{16}{3} a-Z & =-736 \\
\frac{1}{3} a+b+\frac{23}{15} s_{c} & \frac{1}{15} s_{c} \\
\frac{8}{3} a-\frac{4}{15} s_{c}+s_{h} & \\
\frac{85}{3} a-\frac{4}{3} s_{c}+s_{m} & =550 \\
a, b, s_{c}, s_{h}, s_{m} & \geq 0
\end{aligned}
$$

$$
b=32
$$

$$
s_{h}=32
$$

$$
s_{m}=550
$$

Choose variable a to bring into basis.
Computing min $\{3 \cdot 32,3 \cdot 32 / 8,3 \cdot 550 / 85\}$ means pivot on line 2.
Substitute $a=\frac{3}{8}\left(32+\frac{4}{15} s_{c}-s_{h}\right)$.

$$
\begin{array}{rlrl}
\max Z \quad-s_{c}-2 s_{h}-Z & =-800 \\
b+\frac{1}{10} s_{c}-\frac{1}{8} s_{h} & & =28 \\
a \quad-\frac{1}{10} s_{c}+\frac{3}{8} s_{h} & & =12 \\
& \frac{3}{2} s_{c}-\frac{85}{8} s_{h}+s_{m} & =210 \\
a, b, \quad s_{c}, s_{h}, s_{m} & \geq 0
\end{array}
$$

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z=800-s_{C}-2 s_{h}, s_{C} \geq 0, s_{h} \geq 0$

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z=800-s_{C}-2 s_{h}, s_{C} \geq 0, s_{h} \geq 0$
- hence optimum solution value is at most 800

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z=800-s_{\mathcal{C}}-2 s_{h}, s_{C} \geq 0, s_{h} \geq 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Matrix View

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

Matrix View

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B} \text {, } \\
& x_{N} \geq 0
\end{aligned}
$$

Matrix View

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+\quad A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B}, \quad x_{N} \geq 0
\end{aligned}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.

Matrix View

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+\quad A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B} \text {, } \\
& x_{N} \geq 0
\end{aligned}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

Geometric View of Pivoting

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)
- $d_{\ell}=0, \ell \notin B, \ell \neq j$

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)
- $d_{\ell}=0, \ell \notin B, \ell \neq j$
- $A\left(x^{*}+\theta d\right)=b$ must hold. Hence $A d=0$.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)
- $d_{\ell}=0, \ell \notin B, \ell \neq j$
- $A\left(x^{*}+\theta d\right)=b$ must hold. Hence $A d=0$.
- Altogether: $A_{B} d_{B}+A_{* j}=A d=0$, which gives $d_{B}=-A_{B}^{-1} A_{* j}$.

Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)
Let B be a basis, and let $j \notin B$. The vector d with $d_{j}=1$ and $d_{\ell}=0, \ell \notin B, \ell \neq j$ and $d_{B}=-A_{B}^{-1} A_{* j}$ is called the j-th basis direction for B.

Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)
Let B be a basis, and let $j \notin B$. The vector d with $d_{j}=1$ and $d_{\ell}=0, \ell \notin B, \ell \neq j$ and $d_{B}=-A_{B}^{-1} A_{* j}$ is called the j-th basis direction for B.

Going from x^{*} to $x^{*}+\theta \cdot d$ the objective function changes by

$$
\theta \cdot c^{T} d=\theta\left(c_{j}-c_{B}^{T} A_{B}^{-1} A_{* j}\right)
$$

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)
For a basis B the value

$$
\tilde{c}_{j}=c_{j}-c_{B}^{T} A_{B}^{-1} A_{* j}
$$

is called the reduced cost for variable x_{j}.

Note that this is defined for every j. If $j \in B$ then the above term is 0 .

Algebraic Definition of Pivoting

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B} & +c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

Algebraic Definition of Pivoting

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+ \\
& A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B} \text {, } \\
& x_{N} \geq 0
\end{aligned}
$$

Algebraic Definition of Pivoting

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+\quad A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B}, \quad x_{N} \geq 0
\end{aligned}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.

Algebraic Definition of Pivoting

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+\quad A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B}, \quad x_{N} \geq 0
\end{aligned}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

4 Simplex Algorithm

Questions:

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$
\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0 ?
$$

Then we can terminate because we know that the solution is optimal.

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$
\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0 ?
$$

Then we can terminate because we know that the solution is optimal.

- If yes how do we make sure that we reach such a basis?

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ (and hence $A_{i e}$) is negative for a constraint?

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ (and hence $A_{i e}$) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ (and hence $A_{i e}$) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all $b_{i} / A_{i e}$ are negative? Then we do not have a leaving variable.

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ (and hence $A_{i e}$) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all $b_{i} / A_{i e}$ are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Termination

The objective function may not increase!

Termination

The objective function may not increase!
Because a variable x_{ℓ} with $\ell \in B$ is already 0 .

Termination

The objective function may not increase!
Because a variable x_{ℓ} with $\ell \in B$ is already 0 .
The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)
A BFS x^{*} is called degenerate if the set $J=\left\{j \mid x_{j}^{*}>0\right\}$ fulfills $|J|<m$.

Termination

The objective function may not increase!
Because a variable x_{ℓ} with $\ell \in B$ is already 0 .
The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)
A BFS x^{*} is called degenerate if the set $J=\left\{j \mid x_{j}^{*}>0\right\}$ fulfills $|J|<m$.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Non Degenerate Example

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell} / A_{\ell e}$ is minimal among all variables i with $A_{i e}>0$.

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell} / A_{\ell e}$ is minimal among all variables i with $A_{i e}>0$.
- If several variables have minimum $b_{\ell} / A_{\ell e}$ you reach a degenerate basis.

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell} / A_{\ell e}$ is minimal among all variables i with $A_{i e}>0$.
- If several variables have minimum $b_{\ell} / A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.
- The standard slack form for this problem is
$A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.
- The standard slack form for this problem is
$A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.
- Then $s=b, x=0$ is a basic feasible solution (how?).

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.
- The standard slack form for this problem is
$A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.
- Then $s=b, x=0$ is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.
- The standard slack form for this problem is $A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.
- Then $s=b, x=0$ is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Two phase algorithm

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.
4. Otw. you have $x \geq 0$ with $A x=b$.

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.
4. Otw. you have $x \geq 0$ with $A x=b$.
5. From this you can get basic feasible solution.

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.
4. Otw. you have $x \geq 0$ with $A x=b$.
5. From this you can get basic feasible solution.
6. Now you can start the Simplex for the original problem.

Optimality

Lemma 29

Let B be a basis and x^{*} a BFS corresponding to basis B. $\tilde{c} \leq 0$ implies that x^{*} is an optimum solution to the LP.

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
\max \quad 13 a & +23 b \\
\text { s.t. } 5 a+15 b & \leq 480 \\
4 a+4 b & \leq 160 \\
35 a+20 b & \leq 1190 \\
a, b & \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_{i} \geq 0$) such that $\sum_{i} y_{i} a_{i j} \geq c_{j}$ then $\sum_{i} y_{i} b_{i}$ will be an upper bound.

Duality

Definition 30

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$
w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
$$

is called the dual problem.

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{T} x \mid-A x \geq-b, x \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{T} x \mid-A x \geq-b, x \geq 0\right\}$
- $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$

Weak Duality

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ and $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$ be a primal dual pair. x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{T} y \geq c, y \geq 0\right\}$.

Weak Duality

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ and
$w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{T} y \geq c, y \geq 0\right\}$.

Theorem 32 (Weak Duality)
Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$
c^{T} \hat{x} \leq z \leq w \leq b^{T} \hat{y} .
$$

Weak Duality

$$
A^{T} \hat{y} \geq c
$$

Weak Duality

$$
A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c
$$

Weak Duality

$$
A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0)
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{T} \hat{x}=z$, and dual feasible \hat{y} with $b^{T} \hat{y}=w$ we get $z \leq w$.

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{T} \hat{x}=z$, and dual feasible \hat{y} with $b^{T} \hat{y}=w$ we get $z \leq w$.

If P is unbounded then D is infeasible.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$
\begin{aligned}
z & =\max \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
w & =\min \left\{b^{T} y \mid A^{T} y \geq c\right\}
\end{aligned}
$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Proof

Primal:

$$
\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}
$$

Proof

Primal:

$$
\begin{aligned}
& \max \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\min \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} \cdot\left(y^{+}-y^{-}\right) \mid A^{T} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{c}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} \cdot\left(y^{+}-y^{-}\right) \mid A^{T} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} y^{\prime} \mid A^{T} y^{\prime} \geq c\right\}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}=\left(A x^{*}\right)^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}=\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B} \\
& =c^{T} x^{*}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B} \\
& =c^{T} x^{*}
\end{aligned}
$$

Hence, the solution is optimal.

5.3 Strong Duality

$P=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$
n_{A} : number of variables, m_{A} : number of constraints
We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P}=\max \left\{c^{T} x \mid \bar{A} x \leq \bar{b}\right\}$
$n_{\bar{A}}=n_{A}, m_{\bar{A}}=m_{A}+n_{A}$
Dual $D=\min \left\{\bar{b}^{T} y \mid \bar{A}^{T} y=c, y \geq 0\right\}$.

5.3 Strong Duality

'If we have a conic combination y of c then. $b^{T} y$ is an upper bound of the profit we can
 obtain (weak duality):
$c^{T} x=\left(\bar{A}^{T} y\right)^{T} x=y^{T} \bar{A} x \leq y^{T} \bar{b}$
If x and y are optimal then the duality gap is 0 (strong duality). This means

$$
\begin{aligned}
0 & =c^{T} x-y^{T} \bar{b} \\
& =\left(\bar{A}^{T} y\right)^{T} x-y^{T} \bar{b} \\
& =y^{T}(\bar{A} x-\bar{b})
\end{aligned}
$$

The last term can only be 0 if y_{i} is 0 whenever the i-th constraint is not tight. This means we have a conic combination of c, by normals (columns of \bar{A}^{T}) of tight constraints.

Conversely, if we have x such that the nor-1 mals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.
The profit vector c lies in the cone generated by thermals for the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^{*} and w^{*} denote the optimal solution to P and D, respectively. Then

$$
z^{*}=w^{*}
$$

Lemma 34 (Weierstrass)

Let X be a compact set and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.
(without proof)

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^{*} \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.

$\stackrel{\circ}{y}$

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.

$\stackrel{\circ}{y}$

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.
$\left\|y-x^{*}\right\|^{2}$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2} \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{T} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{T} y<\alpha$; $a^{T} x \geq \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.
- Also, $a^{T} y=a^{T}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

$$
\begin{aligned}
& \text { 1. } \exists x \in \mathbb{R}^{n} \text { with } A x=b, x \geq 0 \\
& \text { 2. } \exists y \in \mathbb{R}^{m} \text { with } A^{T} y \geq 0, b^{T} y<0
\end{aligned}
$$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

```
1. }\existsx\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ with }Ax=b,x\geq
2. }\existsy\in\mp@subsup{\mathbb{R}}{}{m}\mathrm{ with }\mp@subsup{A}{}{T}y\geq0,\mp@subsup{b}{}{T}y<
```

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Hence, at most one of the statements can hold.

Farkas Lemma

If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Proof of Farkas Lemma

Proof of Farkas Lemma

Now, assume that 1 . does not hold.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$. Hence, $y^{T} A \geq 0$ as we can choose x arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

$$
\begin{aligned}
& \text { 1. } \exists x \in \mathbb{R}^{n} \text { with } A x \leq b, x \geq 0 \\
& \text { 2. } \exists y \in \mathbb{R}^{m} \text { with } A^{T} y \geq 0, b^{T} y<0, y \geq 0
\end{aligned}
$$

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0, y \geq 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^{n}$ with $[A I] \cdot\left[\begin{array}{l}x \\ s\end{array}\right]=b, x \geq 0, s \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\left[\begin{array}{c}A^{T} \\ I\end{array}\right] y \geq 0, b^{T} y<0$

Proof of Strong Duality

$$
\begin{aligned}
& P: z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\} \\
& D: w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$
z=w
$$

Proof of Strong Duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}:$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} \\
& \text { s.t. } A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } \quad A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} \\
& \text { s.t. } \quad A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v
\end{aligned} \quad<0
$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible.

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

Proof of Strong Duality

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.
Then y is feasible for the dual but $b^{T} y<\alpha$. This means that $w<\alpha$.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $<\alpha$.

Complementary Slackness

Lemma 41

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

Complementary Slackness

Lemma 41

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

If we say that a variable $x_{j}^{*}\left(y_{i}^{*}\right)$ has slack if $x_{j}^{*}>0\left(y_{i}^{*}>0\right)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

From the constraint of the dual it follows that $y^{T} A \geq c^{T}$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $\left(y^{T} A-c^{T}\right)_{j}>0$ (the j-th constraint in the dual is not tight) then $x_{j}=0$ (2.). The result for (1./3./4.) follows similarly.

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{aligned}
& \min 480 C+160 H+1190 M \\
& \text { s.t. } 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{aligned}
& \min 480 C+160 H+1190 M \\
& \text { s.t. } 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{aligned}
$$

Note that brewer won't sell (at least not all) if e.g. $5 C+4 H+35 M<13$ as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$. Because of strong duality this is equal to

$$
\begin{array}{|crl}
\hline \min & \left(b^{T}+\epsilon^{T}\right) y & \\
\text { s.t. } & A^{T} y & \geq c \\
& y & \geq 0 \\
& y &
\end{array}
$$

Interpretation of Dual Variables

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

Example

Example

Example

Example

Example

The change in profit when increasing hops by one unit is

$$
=c_{B}^{T} A_{B}^{-1} e_{h}
$$

Example

The change in profit when increasing hops by one unit is

$$
=\underbrace{c_{B}^{T} A_{B}^{-1}}_{y^{*}} e_{h}
$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y} .
$$

(capacity constraints)

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y} .
$$

(capacity constraints)

2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{x} f_{v x}=\sum_{x} f_{x v} .
$$

(flow conservation constraints)

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

LP-Formulation of Maxflow

\max		$\sum_{z} f_{s z}-\sum_{z} f_{z s}$		
s.t.	$\forall(z, w) \in V \times V$	$f_{z w}$	$\leq c_{z w}$	$\ell_{z w}$
	$\forall w \neq s, t$	$\sum_{z} f_{z w}-\sum_{z} f_{w z}$	$=0$	p_{w}
	$f_{z w}$	≥ 0		

LP-Formulation of Maxflow

$$
\quad \ell_{z w}
$$

| min | | $\sum_{(x y)} c_{x y} \ell_{x y}$ | |
| ---: | :--- | :--- | :--- | :--- |
| s.t. | $f_{x y}(x, y \neq s, t):$ | $1 \ell_{x y}-1 p_{x}+1 p_{y}$ | ≥ 0 |
| | $f_{s y}(y \neq s, t):$ | $1 \ell_{s y}+1 p_{y}$ | ≥ 1 |
| | $f_{x s}(x \neq s, t):$ | $1 \ell_{x s}-1 p_{x}$ | ≥-1 |
| | $f_{t y}(y \neq s, t):$ | $1 \ell_{t y}+1 p_{y}$ | ≥ 0 |
| | $f_{x t}(x \neq s, t):$ | $1 \ell_{x t}-1 p_{x}$ | ≥ 0 |
| | $f_{s t}:$ | $1 \ell_{s t}$ | ≥ 1 |
| | $f_{t s}:$ | $1 \ell_{t s}$ | ≥-1 |
| | | $\ell_{x y}$ | ≥ 0 |

LP-Formulation of Maxflow

\min		$\sum_{(x y)} c_{x y} \ell_{x y}$	
s.t.	$f_{x y}(x, y \neq s, t):$	$1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0$	
	$f_{s y}(y \neq s, t):$	$1 \ell_{s y}-1+1 p_{y} \geq$	0
	$f_{x s}(x \neq s, t):$	$1 \ell_{x s}-1 p_{x}+1 \geq$	0
	$f_{t y}(y \neq s, t):$	$1 \ell_{t y}-0+1 p_{y} \geq$	0
	$f_{x t}(x \neq s, t):$	$1 \ell_{x t}-1 p_{x}+0 \geq$	0
	$f_{s t}:$	$1 \ell_{s t}-1+0 \geq$	0
	$f_{t s}:$	$1 \ell_{t s}-0+1 \geq$	0
		$\ell_{x y} \geq$	0

LP-Formulation of Maxflow

\min		$\sum_{(x y)} c_{x y} \ell_{x y}$	
s.t.	$f_{x y}(x, y \neq s, t):$	$1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0$	
	$f_{s y}(y \neq s, t):$	$1 \ell_{s y}-p_{s}+1 p_{y} \geq$	0
	$f_{x s}(x \neq s, t):$	$1 \ell_{x s}-1 p_{x}+p_{s} \geq 0$	
	$f_{t y}(y \neq s, t):$	$1 \ell_{t y}-p_{t}+1 p_{y} \geq$	0
	$f_{x t}(x \neq s, t):$	$1 \ell_{x t}-1 p_{x}+p_{t} \geq 0$	
	$f_{s t}:$	$1 \ell_{s t}-p_{s}+p_{t} \geq 0$	
	$f_{t s}:$	$1 \ell_{t s}-p_{t}+p_{s} \geq 0$	
		$\ell_{x y} \geq$	0

with $p_{t}=0$ and $p_{s}=1$.

LP-Formulation of Maxflow

\min	$\sum_{(x y)} c_{x y} \ell_{x y}$		
s.t.	$f_{x y}:$	$1 \ell_{x y}-1 p_{x}+1 p_{y}$	≥ 0
			0
	$\ell_{x y}$	≥ 0	
p_{s}	$=1$		
	p_{t}	$=0$	

LP-Formulation of Maxflow

$$
\begin{aligned}
\min & \sum_{(x y)} c_{x y} \ell_{x y} \\
\text { s.t. } f_{x y}: 1 \ell_{x y}-1 p_{x}+1 p_{y} & \geq 0 \\
& \ell_{x y} \\
& \geq 0 \\
& p_{s}
\end{aligned}=1
$$

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.

LP-Formulation of Maxflow

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

LP-Formulation of Maxflow

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

The constraint $p_{x} \leq \ell_{x y}+p_{y}$ then simply follows from triangle inequality $\left(d(x, t) \leq d(x, y)+d(y, t) \Rightarrow d(x, t) \leq \ell_{x y}+d(y, t)\right)$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

Degeneracy Revisited

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degenerate Example

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:
Given feasible LP $:=\max \left\{c^{T} x, A x=b ; x \geq 0\right\}$. Change it into $\mathrm{LP}^{\prime}:=\max \left\{c^{T} x, A x=b^{\prime}, x \geq 0\right\}$ such that

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:
Given feasible LP $:=\max \left\{c^{T} x, A x=b ; x \geq 0\right\}$. Change it into $\mathrm{LP}^{\prime}:=\max \left\{c^{T} x, A x=b^{\prime}, x \geq 0\right\}$ such that
I. LP^{\prime} is feasible

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP $:=\max \left\{c^{T} x, A x=b ; x \geq 0\right\}$. Change it into $\mathrm{LP}^{\prime}:=\max \left\{c^{T} x, A x=b^{\prime}, x \geq 0\right\}$ such that
I. LP^{\prime} is feasible
II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_{B}^{-1} b \nsupseteq 0$) then B corresponds to an infeasible basis in LP^{\prime} (note that columns in A_{B} are linearly independent).

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP $:=\max \left\{c^{T} x, A x=b ; x \geq 0\right\}$. Change it into $\mathrm{LP}^{\prime}:=\max \left\{c^{T} x, A x=b^{\prime}, x \geq 0\right\}$ such that
I. LP^{\prime} is feasible
II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_{B}^{-1} b \nsupseteq 0$) then B corresponds to an infeasible basis in LP^{\prime} (note that columns in A_{B} are linearly independent).
III. LP' has no degenerate basic solutions

Perturbation

Let B be index set of some basis with basic solution

$$
x_{B}^{*}=A_{B}^{-1} b \geq 0, x_{N}^{*}=0 \quad \text { (i.e. } B \text { is feasible) }
$$

Perturbation

Let B be index set of some basis with basic solution

$$
x_{B}^{*}=A_{B}^{-1} b \geq 0, x_{N}^{*}=0 \quad \text { (i.e. } B \text { is feasible) }
$$

Fix

$$
b^{\prime}:=b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right) \text { for } \varepsilon>0 .
$$

This is the perturbation that we are using.

Property I

The new LP is feasible because the set B of basis variables provides a feasible basis:

Property I

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$
A_{B}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)=x_{B}^{*}+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right) \geq 0 .
$$

Property II

Let \tilde{B} be a non-feasible basis. This means $\left(A_{\tilde{B}}^{-1} b\right)_{i}<0$ for some row i.

Property II

Let \tilde{B} be a non-feasible basis. This means $\left(A_{\tilde{B}}^{-1} b\right)_{i}<0$ for some row i.

Then for small enough $\epsilon>0$

$$
\left(A_{\bar{B}}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)\right)_{i}
$$

Property II

Let \tilde{B} be a non-feasible basis. This means $\left(A_{\tilde{B}}^{-1} b\right)_{i}<0$ for some row i.

Then for small enough $\epsilon>0$

$$
\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)\right)_{i}=\left(A_{\tilde{B}}^{-1} b\right)_{i}+\left(A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{i}<0
$$

Property II

Let \tilde{B} be a non-feasible basis. This means $\left(A_{\tilde{B}}^{-1} b\right)_{i}<0$ for some row i.

Then for small enough $\epsilon>0$

$$
\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)\right)_{i}=\left(A_{\tilde{B}}^{-1} b\right)_{i}+\left(A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{i}<0
$$

Hence, \tilde{B} is not feasible.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\tilde{B}}^{*}=A_{\tilde{B}}^{-1} b+A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\bar{B}}^{*}=A_{\tilde{B}}^{-1} b+A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\bar{B}}^{*}=A_{\bar{B}}^{-1} b+A_{\bar{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.
$A_{\bar{B}}^{-1} A_{B}$ has rank m. Therefore no polynom is 0 .

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\bar{B}}^{*}=A_{\bar{B}}^{-1} b+A_{\bar{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.
$A_{\bar{B}}^{-1} A_{B}$ has rank m. Therefore no polynom is 0 .
A polynom of degree at most m has at most m roots (Nullstellen).

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\tilde{B}}^{*}=A_{\tilde{B}}^{-1} b+A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.
$A_{\tilde{B}}^{-1} A_{B}$ has rank m. Therefore no polynom is 0 .
A polynom of degree at most m has at most m roots (Nullstellen).
Hence, $\epsilon>0$ small enough gives that no component of the above vector is 0 .

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\tilde{B}}^{*}=A_{\tilde{B}}^{-1} b+A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.
$A_{\tilde{B}}^{-1} A_{B}$ has rank m. Therefore no polynom is 0 .
A polynom of degree at most m has at most m roots (Nullstellen).
Hence, $\epsilon>0$ small enough gives that no component of the above vector is 0 . Hence, no degeneracies.

Since, there are no degeneracies Simplex will terminate when run on LP'.

Since, there are no degeneracies Simplex will terminate when run on LP'.

- If it terminates because the reduced cost vector fulfills

$$
\tilde{c}=\left(c^{T}-c_{B}^{T} A_{B}^{-1} A\right) \leq 0
$$

then we have found an optimal basis.

Since, there are no degeneracies Simplex will terminate when run on LP^{\prime}.

- If it terminates because the reduced cost vector fulfills

$$
\tilde{c}=\left(c^{T}-c_{B}^{T} A_{B}^{-1} A\right) \leq 0
$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

Since, there are no degeneracies Simplex will terminate when run on LP'.

- If it terminates because the reduced cost vector fulfills

$$
\tilde{c}=\left(c^{T}-c_{B}^{T} A_{B}^{-1} A\right) \leq 0
$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

- If it terminates because it finds a variable x_{j} with $\tilde{c}_{j}>0$ for which the j-th basis direction d, fulfills $d \geq 0$ we know that LP^{\prime} is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP^{\prime} without explicitly doing a perturbation.

Lexicographic Pivoting

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_{e}>0$, of course).

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_{e}>0$, of course).

If we do not have a choice for the leaving variable then LP^{\prime} and LP do the same (i.e., choose the same variable).

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_{e}>0$, of course).

If we do not have a choice for the leaving variable then LP^{\prime} and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Lexicographic Pivoting

In the following we assume that $b \geq 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $\left(A_{B}^{-1} A \mid A_{B}^{-1} b\right)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Lexicographic Pivoting

In the following we assume that $b \geq 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $\left(A_{B}^{-1} A \mid A_{B}^{-1} b\right)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$
b^{\prime}=b+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

Matrix View

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

$$
\begin{aligned}
& \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}=Z-c_{B}^{T} A_{B}^{-1} b \\
& I x_{B}+\quad A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B} \text {, } \\
& x_{N} \geq 0
\end{aligned}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$
\theta_{\ell}
$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$
\theta_{\ell}=\frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}}
$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$
\theta_{\ell}=\frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}}=\frac{\left(A_{B}^{-1} b\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}} .
$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$
\theta_{\ell}=\frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}}=\frac{\left(A_{B}^{-1} b\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}} .
$$

ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

Lexicographic Pivoting

Definition 44
$u \leq_{\text {lex }} v$ if and only if the first component in which u and v differ fulfills $u_{i} \leq v_{i}$.

Lexicographic Pivoting

LP $^{\prime}$ chooses an index that minimizes
θ_{ℓ}

Lexicographic Pivoting

LP^{\prime} chooses an index that minimizes

$$
\theta_{\ell}=\frac{\left(A_{B}^{-1}\left(b+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{\ell}\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

Lexicographic Pivoting

LP $^{\prime}$ chooses an index that minimizes

$$
\theta_{\ell}=\frac{\left(A_{B}^{-1}\left(b+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}=\frac{\left(A_{B}^{-1}(b \mid I)\left(\begin{array}{c}
1 \\
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

Lexicographic Pivoting

LP $^{\prime}$ chooses an index that minimizes

$$
\begin{aligned}
\theta_{\ell} & =\frac{\left(A_{B}^{-1}\left(b+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{\ell}\right.}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}=\frac{\left(A_{B}^{-1}(b \mid I)\left(\begin{array}{c}
1 \\
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}} \\
& =\frac{\ell \text {-th row of } A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}\left(\begin{array}{c}
1 \\
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
\end{aligned}
$$

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$
\frac{\ell \text {-th row of } A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

is lexicographically minimal.

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$
\frac{\ell \text {-th row of } A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

is lexicographically minimal.
Of course only including rows with $\left(A_{B}^{-1} A_{* e}\right)_{\ell}>0$.

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$
\frac{\ell \text {-th row of } A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

is lexicographically minimal.
Of course only including rows with $\left(A_{B}^{-1} A_{* e}\right)_{\ell}>0$.
This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Number of Simplex Iterations

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.
If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.
If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.
If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.
If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

Example

$$
\begin{array}{rc}
\max c^{T} x & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& \vdots \\
& 0 \leq x_{n} \leq 1
\end{array}
$$

$2 n$ constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^{n} vertices.

Example

$$
\begin{array}{rc}
\max c^{T} x & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& \vdots \\
& 0 \leq x_{n} \leq 1
\end{array}
$$

However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

Klee Minty Cube

$$
\begin{array}{rr}
\max x_{n} & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& \epsilon x_{1} \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon x_{2} \leq x_{3} \leq 1-\epsilon x_{2} \\
& \vdots \\
\epsilon x_{n-1} \leq x_{n} \leq 1-\epsilon x_{n-1} \\
& x_{i} \geq 0
\end{array}
$$

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_{i} stay in the basis at all times.

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_{i} stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).

Observations

- We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).
- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_{i} stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.

Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0,1)$ is the unique optimal basis.

Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0,1)$ is the unique optimal basis.
- Our sequence S_{n} starts at $(0, \ldots, 0)$ ends with $(0, \ldots, 0,1)$ and visits every node of the hypercube.

Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0,1)$ is the unique optimal basis.
- Our sequence S_{n} starts at $(0, \ldots, 0)$ ends with $(0, \ldots, 0,1)$ and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

Klee Minty Cube

$$
\begin{array}{rr}
\max x_{n} & \\
\text { s.t. } \quad 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon x_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rrl}
\max x_{n} & \\
\text { s.t. } & 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon X_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rrl}
\max x_{n} & \\
\text { s.t. } & 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon X_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rrl}
\max x_{n} & \\
\text { s.t. } & 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon X_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rr}
\max x_{n} & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon X_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rr}
\max x_{n} & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon X_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rrl}
\max x_{n} & \\
\text { s.t. } & 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon x_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{array}{rrl}
\max x_{n} & \\
\text { s.t. } & 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon x_{2}
\end{array}
$$

Klee Minty Cube

$$
\begin{aligned}
\max x_{n} & \\
\text { s.t. } \quad 0 & \leq x_{1} \leq 1 \\
\epsilon X_{1} & \leq x_{2} \leq 1-\epsilon x_{1} \\
\epsilon X_{2} & \leq x_{3} \leq 1-\epsilon x_{2}
\end{aligned}
$$

Analysis

The sequence S_{n} that visits every node of the hypercube is defined recursively

The non-recursive case is $S_{1}=0 \rightarrow 1$

Analysis

Lemma 45
The objective value x_{n} is increasing along path S_{n}.

Analysis

Lemma 45
The objective value x_{n} is increasing along path S_{n}.

Proof by induction:

Analysis

Lemma 45
The objective value x_{n} is increasing along path S_{n}.

Proof by induction:

$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.

Analysis

Lemma 45
The objective value x_{n} is increasing along path S_{n}.

Proof by induction:
$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.
$n-1 \rightarrow n$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.

Analysis

Lemma 45
The objective value x_{n} is increasing along path S_{n}.

Proof by induction:
$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.
$\boldsymbol{n}-1 \rightarrow \boldsymbol{n}$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_{n}.

Analysis

Lemma 45

The objective value x_{n} is increasing along path S_{n}.

Proof by induction:
$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.
$\boldsymbol{n}-1 \rightarrow \boldsymbol{n}$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_{n}.
- Going from $(0, \ldots, 0,1,0)$ to $(0, \ldots, 0,1,1)$ increases x_{n} for small enough ϵ.

Analysis

Lemma 45

The objective value x_{n} is increasing along path S_{n}.

Proof by induction:

$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.
$\boldsymbol{n}-1 \rightarrow \boldsymbol{n}$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_{n}.
- Going from $(0, \ldots, 0,1,0)$ to ($0, \ldots, 0,1,1$) increases x_{n} for small enough ϵ.
- For the remaining path $S_{n-1}^{\text {rev }}$ we have $x_{n}=1-\epsilon x_{n-1}$.

Analysis

Lemma 45

The objective value x_{n} is increasing along path S_{n}.

Proof by induction:

$\boldsymbol{n}=\mathbf{1}$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$.
$\boldsymbol{n}-\mathbf{1} \rightarrow \boldsymbol{n}$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_{n}.
- Going from $(0, \ldots, 0,1,0)$ to ($0, \ldots, 0,1,1$) increases x_{n} for small enough ϵ.
- For the remaining path S_{n-1}^{rev} we have $x_{n}=1-\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence $-\epsilon x_{n-1}$ is increasing along $S_{n-1}^{\text {rev }}$.

Remarks about Simplex

Observation
The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(\mathrm{mn})$.

In practise it usually takes a linear number of iterations.

Remarks about Simplex

Theorem
For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time $\left(\Omega\left(2^{\Omega(n)}\right)\right)$ (e.g. Klee Minty 1972).

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega\left(2^{\Omega\left(n^{\alpha}\right)}\right)$ for $\alpha>0$) (Friedmann, Hansen, Zwick 2011).

Remarks about Simplex

Conjecture (Hirsch 1957)
The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than $m-d$.

The conjecture has been proven wrong in 2010.
But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m, d))$ is open.

8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{T} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.

8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{T} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}\left(m(m+d)\binom{m+d}{m}\right) \approx(m+d)^{m}$. (slightly better bounds on the running time exist, but will not be discussed here).

8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{T} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.
- In the worst-case Simplex runs in time roughly
$\mathcal{O}\left(m(m+d)\binom{m+d}{m}\right) \approx(m+d)^{m}$. (slightly better bounds on the running time exist, but will not be discussed here).
- If d is much smaller than m one can do a lot better.

8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{T} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.
- In the worst-case Simplex runs in time roughly
$\mathcal{O}\left(m(m+d)\binom{m+d}{m}\right) \approx(m+d)^{m}$. (slightly better bounds on the running time exist, but will not be discussed here).
- If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d!\cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

Setting:

- We assume an LP of the form

\min	$c^{T} x$		
s.t.	$A x$	$\geq b$	
	x	≥ 0	

- We assume that the LP is bounded.

Ensuring Conditions

Given a standard minimization LP

| \min | $c^{T} x$ | |
| ---: | ---: | ---: | ---: |
| s.t. | $A x$ | $\geq b$ |
| | x | ≥ 0 |
| | | |

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$ for any basic feasible solution.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A}.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A}.
If B is an optimal basis then x_{B} with $\bar{A}_{B} x_{B}=\bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

Theorem 46 (Cramers Rule)

Let M be a matrix with $\operatorname{det}(M) \neq 0$. Then the solution to the system $M x=b$ is given by

$$
x_{i}=\frac{\operatorname{det}\left(M_{j}\right)}{\operatorname{det}(M)},
$$

where M_{i} is the matrix obtained from M by replacing the i-th column by the vector b.

Proof:

Proof:

- Define

$$
X_{i}=\left(\begin{array}{ccccc}
\mid & & \mid & \mid & \mid \\
e_{1} & \cdots & e_{i-1} & x & e_{i+1} \\
\mid & \mid & \mid & \mid & \mid \\
\mid & \mid & & e_{n} \\
\hline
\end{array}\right)
$$

Proof:

- Define

$$
X_{i}=\left(\begin{array}{ccccc}
\mid & & \mid & \mid & \mid \\
e_{1} & \cdots & e_{i-1} & x & e_{i+1} \\
\mid & & \mid & \mid & \mid \\
\mid & & e_{n} \\
\mid
\end{array}\right)
$$

Note that expanding along the i-th column gives that $\operatorname{det}\left(X_{i}\right)=x_{i}$.

Proof:

- Define

$$
X_{i}=\left(\begin{array}{cccccc}
\mid & & \mid & \mid & & \mid \\
e_{1} & \cdots & e_{i-1} & x & e_{i+1} & \cdots \\
\mid & \mid & \mid & e_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Note that expanding along the i-th column gives that $\operatorname{det}\left(X_{i}\right)=x_{i}$.

- Further, we have

$$
M X_{i}=\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
M e_{1} & \cdots & M e_{i-1} & M x
\end{array} M_{i+1} \cdots \cdots M e_{n}\right)=M_{i}
$$

Proof:

- Define

$$
X_{i}=\left(\begin{array}{cccccc}
\mid & & \mid & \mid & & \mid \\
e_{1} & \cdots & e_{i-1} & x & e_{i+1} & \cdots \\
\mid & \mid & \mid & e_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Note that expanding along the i-th column gives that $\operatorname{det}\left(X_{i}\right)=x_{i}$.

- Further, we have
- Hence,

$$
x_{i}=\operatorname{det}\left(X_{i}\right)=\frac{\operatorname{det}\left(M_{i}\right)}{\operatorname{det}(M)}
$$

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector \bar{b} (for some j).

Observe that
$|\operatorname{det}(C)|$

'Here $\operatorname{sgn}(\pi)$ denotes the sign of the permu-1 tation, which is 1 if the permutation can be generated by an even number of transposi-1 'tions (exchanging two elements), and -1 if ' the number of transpositions is odd.
The first identity is known as Leibniz formula.।

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$
|\operatorname{det}(C)|=\left|\sum_{\pi \in S_{m}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq m} C_{i \pi(i)}\right|
$$

[^0]
Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$
\begin{aligned}
& |\operatorname{det}(C)|=\left|\sum_{\pi \in S_{m}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq m} C_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{m}} \prod_{1 \leq i \leq m}\left|C_{i \pi(i)}\right| \\
& \text { Here } \operatorname{sgn}(\pi) \text { denotes the sign of the permu- } \\
& \text { tation, which is } 1 \text { if the permutation can be } \\
& \text { generated by an even number of transposi-1 } \\
& \text { 'tions (exchanging two elements), and }-1 \text { if } \\
& \text { the number of transpositions is odd. } \\
& \text { The first identity is known as Leibniz formula.। }
\end{aligned}
$$

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$
\begin{aligned}
& |\operatorname{det}(C)|=\left|\sum_{\pi \in S_{m}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq m} C_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{m}} \prod_{1 \leq i \leq m}\left|C_{i \pi(i)}\right| \\
& \leq m!\cdot Z^{m} \quad . \quad . \quad \text { Here } \operatorname{sgn}(\pi) \text { denotes the sign of the permu- } \\
& \text { tation, which is } 1 \text { if the permutation can be } \\
& \text { generated by an even number of transposi-1 } \\
& \text { 'tions (exchanging two elements), and }-1 \text { if ' } \\
& \text { the number of transpositions is odd. } \\
& \text { The first identity is known as Leibniz formula.। }
\end{aligned}
$$

Bounding the Determinant

Alternatively, Hadamards inequality gives
$|\operatorname{det}(C)|$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$
|\operatorname{det}(C)| \leq \prod_{i=1}^{m}\left\|C_{* i}\right\|
$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$
|\operatorname{det}(C)| \leq \prod_{i=1}^{m}\left\|C_{* i}\right\| \leq \prod_{i=1}^{m}(\sqrt{m} Z)
$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$
\begin{aligned}
|\operatorname{det}(C)| & \leq \prod_{i=1}^{m}\left\|C_{* i}\right\| \leq \prod_{i=1}^{m}(\sqrt{m} Z) \\
& \leq m^{m / 2} Z^{m}
\end{aligned}
$$

Hadamards Inequality

Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $\left\|e_{1}\right\|=\left\|a_{1}\right\|,\left\|e_{2}\right\|=\left\|a_{2}\right\|,\left\|e_{3}\right\|=\left\|a_{3}\right\|$).

Ensuring Conditions

Given a standard minimization LP

$$
\begin{array}{rrl}
\min & c^{T} x & \\
\text { s.t. } & A x & \geq b \\
& x & \geq 0
\end{array}
$$

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$ for any basic feasible solution. Add the constraint $c^{T} x \geq-d Z\left(m!\cdot Z^{m}\right)-1$. Note that this constraint is superfluous unless the LP is unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

- If the cost is $c^{T} x=-(d Z)\left(m!\cdot Z^{m}\right)-1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^{T} x \geq-d Z\left(m!\cdot Z^{m}\right)-1$.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^{T} x \geq-d Z\left(m!\cdot Z^{m}\right)-1$.

We give a routine $\operatorname{SeidelLP}(\mathcal{H}, d)$ that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^{T} x$ over all feasible points.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^{T} x \geq-d Z\left(m!\cdot Z^{m}\right)-1$.

We give a routine $\operatorname{SeidelLP}(\mathcal{H}, d)$ that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^{T} x$ over all feasible points.

In addition it obeys the implicit constraint $c^{T} x \geq-(d Z)\left(m!\cdot Z^{m}\right)-1$.

Algorithm 1 SeideILP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;

Algorithm 1 SeideILP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane

Algorithm 1 SeideILP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane 3: choose random constraint $h \in \mathcal{H}$

Algorithm 1 SeideILP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$

Algorithm 1 SeideILP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible
7: if \hat{x}^{*} fulfills h then return \hat{x}^{*}

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible
7: if \hat{x}^{*} fulfills h then return \hat{x}^{*}
8: // optimal solution fulfills h with equality, i.e., $a_{h}^{T} x=b_{h}$

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible
7: if \hat{x}^{*} fulfills h then return \hat{x}^{*}
8: // optimal solution fulfills h with equality, i.e., $a_{h}^{T} x=b_{h}$
9: solve $a_{h}^{T} x=b_{h}$ for some variable x_{ℓ};
10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible
7: if \hat{x}^{*} fulfills h then return \hat{x}^{*}
8: // optimal solution fulfills h with equality, i.e., $a_{h}^{T} x=b_{h}$
9: solve $a_{h}^{T} x=b_{h}$ for some variable x_{ℓ};
10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.; 11: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d-1)$

Algorithm 1 SeidelLP (\mathcal{H}, d)
1: if $d=1$ then solve 1 -dimensional problem and return;
2: if $\mathcal{H}=\varnothing$ then return x on implicit constraint hyperplane
3: choose random constraint $h \in \mathcal{H}$
4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \backslash\{h\}$
5: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d)$
6: if $\hat{x}^{*}=$ infeasible then return infeasible
7: if \hat{x}^{*} fulfills h then return \hat{x}^{*}
8: // optimal solution fulfills h with equality, i.e., $a_{h}^{T} x=b_{h}$
9: solve $a_{h}^{T} x=b_{h}$ for some variable x_{ℓ};
10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
11: $\hat{x}^{*} \leftarrow \operatorname{SeidelLP}(\hat{\mathcal{H}}, d-1)$
12: if $\hat{x}^{*}=$ infeasible then
13: return infeasible
14: else
15:
add the value of x_{ℓ} to \hat{x}^{*} and return the solution

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.
- The first recursive call takes time $T(m-1, d)$ for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills h.

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.
- The first recursive call takes time $T(m-1, d)$ for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^{*} does not fulfill h we need time $\mathcal{O}(d(m+1))=\mathcal{O}(d m)$ to eliminate x_{ℓ}. Then we make a recursive call that takes time $T(m-1, d-1)$.

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.
- The first recursive call takes time $T(m-1, d)$ for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^{*} does not fulfill h we need time $\mathcal{O}(d(m+1))=\mathcal{O}(d m)$ to eliminate x_{ℓ}. Then we make a recursive call that takes time $T(m-1, d-1)$.
- The probability of being unlucky is at most d / m as there are at most d constraints whose removal will decrease the objective function

8 Seidels LP-algorithm

This gives the recurrence

$$
T(m, d)= \begin{cases}\mathcal{O}(\max \{1, m\}) & \text { if } d= \\ \mathcal{O}(d) & \text { if } d> \\ \mathcal{O}(d)+T(m-1, d)+ & \\ \frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) & \text { otw. }\end{cases}
$$

Note that $T(m, d)$ denotes the expected running time.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.

$$
T(m, d)= \begin{cases}C \max \{1, m\} & \text { if } d= \\ C d & \text { if } d> \\ C d+T(m-1, d)+ & \\ \frac{d}{m}(C d m+T(m-1, d-1)) & \text { otw. }\end{cases}
$$

Note that $T(m, d)$ denotes the expected running time.

8 Seidels LP-algorithm

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$
$T(m, 1)$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\}
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\}
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$
$T(0, d) \leq \mathcal{O}(d)$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$
$T(0, d) \leq \mathcal{O}(d) \leq C d$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$

$$
T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\}
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$
$T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\}$ for $f(d) \geq d$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$

$$
T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\} \text { for } f(d) \geq d
$$

$d>1 ; m=1:$

$$
T(1, d)=\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1))
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$

$$
T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\} \text { for } f(d) \geq d
$$

$d>1 ; m=1:$

$$
\begin{aligned}
T(1, d) & =\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1)) \\
& \leq C d+C d+C d^{2}+d C f(d-1)
\end{aligned}
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$

$$
T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\} \text { for } f(d) \geq d
$$

$d>1 ; m=1:$

$$
\begin{aligned}
T(1, d) & =\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1)) \\
& \leq C d+C d+C d^{2}+d C f(d-1) \\
& \leq C f(d) \max \{1, m\}
\end{aligned}
$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$

$$
T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\} \text { for } f(1) \geq 1
$$

$d>1 ; m=0:$

$$
T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\} \text { for } f(d) \geq d
$$

$d>1 ; m=1:$

$$
\begin{aligned}
T(1, d) & =\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1)) \\
& \leq C d+C d+C d^{2}+d C f(d-1) \\
& \leq C f(d) \max \{1, m\} \text { for } f(d) \geq 3 d^{2}+d f(d-1)
\end{aligned}
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
T(m, d)=\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1))
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
T(m, d) & =\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1)
\end{aligned}
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
T(m, d) & =\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1) \\
& \leq 2 C d^{2}+C f(d)(m-1)+d C f(d-1)
\end{aligned}
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
T(m, d) & =\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1) \\
& \leq 2 C d^{2}+C f(d)(m-1)+d C f(d-1) \\
& \leq C f(d) m
\end{aligned}
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:
(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
& T(m, d)=\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1) \\
& \leq 2 C d^{2}+C f(d)(m-1)+d C f(d-1) \\
& \leq C f(d) m \\
& \text { if } f(d) \geq d f(d-1)+2 d^{2} .
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then
$f(d)$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
f(d)=3 d^{2}+d f(d-1)
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d) & =3 d^{2}+d f(d-1) \\
& =3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right]
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d) & =3 d^{2}+d f(d-1) \\
& =3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
& =3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right]
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 3 d^{2}+d f(d-1) \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 3 d^{2}+3 d(d-1)^{2}+3 d(d-1)(d-2)^{2}+\ldots \\
& +3 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 3 d^{2}+d f(d-1) \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 3 d^{2}+3 d(d-1)^{2}+3 d(d-1)(d-2)^{2}+\ldots \\
& +3 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2} \\
= & 3 d!\left(\frac{d^{2}}{d!}+\frac{(d-1)^{2}}{(d-1)!}+\frac{(d-2)^{2}}{(d-2)!}+\ldots\right)
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 3 d^{2}+d f(d-1) \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 3 d^{2}+3 d(d-1)^{2}+3 d(d-1)(d-2)^{2}+\ldots \\
& +3 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2} \\
= & 3 d!\left(\frac{d^{2}}{d!}+\frac{(d-1)^{2}}{(d-1)!}+\frac{(d-2)^{2}}{(d-2)!}+\ldots\right) \\
= & \mathcal{O}(d!)
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 3 d^{2}+d f(d-1) \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 3 d^{2}+3 d(d-1)^{2}+3 d(d-1)(d-2)^{2}+\ldots \\
& +3 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2} \\
= & 3 d!\left(\frac{d^{2}}{d!}+\frac{(d-1)^{2}}{(d-1)!}+\frac{(d-2)^{2}}{(d-2)!}+\ldots\right) \\
= & \mathcal{O}(d!)
\end{aligned}
$$

since $\sum_{i \geq 1} \frac{i^{2}}{i!}$ is a constant.

$$
\sum_{i \geq 1} \frac{i^{2}}{i!}=\sum_{i \geq 0} \frac{i+1}{i!}=e+\sum_{i \geq 1} \frac{i}{i!}=2 e
$$

Complexity

LP Feasibility Problem (LP feasibility A)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$. Does there exist $x \in \mathbb{R}^{n}$ with $A x \leq b$, $x \geq 0$?

LP Feasiblity Problem (LP feasibility B)

Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$. Find $x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$!

LP Optimization A

Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}, c \in \mathbb{Z}^{n}$. What is the maximum value of $c^{T} x$ for a feasible point $x \in \mathbb{R}^{n}$?

LP Optimization B

Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}, c \in \mathbb{Z}^{n}$. Return feasible point $x \in \mathbb{R}^{n}$ with maximum value of $c^{T} x$?

[^1]
The Bit Model

Input size

- The number of bits to represent a number $a \in \mathbb{Z}$ is

$$
\left\lceil\log _{2}(|a|)\right\rceil+1
$$

The Bit Model

Input size

- The number of bits to represent a number $a \in \mathbb{Z}$ is

$$
\left\lceil\log _{2}(|a|)\right\rceil+1
$$

- Let for an $m \times n$ matrix $M, L(M)$ denote the number of bits required to encode all the numbers in M.

$$
\langle M\rangle:=\sum_{i, j}\left\lceil\log _{2}\left(\left|m_{i j}\right|\right)+1\right\rceil
$$

The Bit Model

Input size

- The number of bits to represent a number $a \in \mathbb{Z}$ is

$$
\left\lceil\log _{2}(|a|)\right\rceil+1
$$

- Let for an $m \times n$ matrix $M, L(M)$ denote the number of bits required to encode all the numbers in M.

$$
\langle M\rangle:=\sum_{i, j}\left\lceil\log _{2}\left(\left|m_{i j}\right|\right)+1\right\rceil
$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.

The Bit Model

Input size

- The number of bits to represent a number $a \in \mathbb{Z}$ is

$$
\left\lceil\log _{2}(|a|)\right\rceil+1
$$

- Let for an $m \times n$ matrix $M, L(M)$ denote the number of bits required to encode all the numbers in M.

$$
\langle M\rangle:=\sum_{i, j}\left\lceil\log _{2}\left(\left|m_{i j}\right|\right)+1\right\rceil
$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L=\Theta(\langle A\rangle+\langle b\rangle)$.
- In the following we sometimes refer to $L:=\langle A\rangle+\langle b\rangle$ as the input size (even though the real input size is something in $\Theta(\langle A\rangle+\langle b\rangle))$.
- Sometimes we may also refer to $L:=\langle A\rangle+\langle b\rangle+n \log _{2} n$ as the input size. Note that $n \log _{2} n=\Theta(\langle A\rangle+\langle b\rangle)$.
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L).

Suppose that $\bar{A} x=b ; x \geq 0$ is feasible.

Suppose that $\bar{A} x=b ; x \geq 0$ is feasible.
Then there exists a basic feasible solution. This means a set B of basic variables such that

$$
x_{B}=\bar{A}_{B}^{-1} b
$$

and all other entries in x are 0 .

I In the following we show that this x has small encoding length ! ' and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short...

Size of a Basic Feasible Solution

- A: original input matrix
- \bar{A} : transformation of A into standard form
- \bar{A}_{B} : submatrix of \bar{A} corresponding to basis B

Lemma 47

Let $\bar{A}_{B} \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^{m}$. Define $L=\langle A\rangle+\langle b\rangle+n \log _{2} n$.
Then a solution to $\bar{A}_{B} x_{B}=b$ has rational components x_{j} of the form $\frac{D_{j}}{D}$, where $\left|D_{j}\right| \leq 2^{L}$ and $|D| \leq 2^{L}$.

Size of a Basic Feasible Solution

- A: original input matrix
- \bar{A} : transformation of A into standard form
- \bar{A}_{B} : submatrix of \bar{A} corresponding to basis B

Lemma 47

Let $\bar{A}_{B} \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^{m}$. Define $L=\langle A\rangle+\langle b\rangle+n \log _{2} n$.
Then a solution to $\bar{A}_{B} x_{B}=b$ has rational components x_{j} of the form $\frac{D_{j}}{D}$, where $\left|D_{j}\right| \leq 2^{L}$ and $|D| \leq 2^{L}$.

Proof:

Cramers rules says that we can compute x_{j} as

$$
x_{j}=\frac{\operatorname{det}\left(\bar{A}_{B}^{j}\right)}{\operatorname{det}\left(\bar{A}_{B}\right)}
$$

where \bar{A}_{B}^{j} is the matrix obtained from \bar{A}_{B} by replacing the j-th column by the vector b.

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$|\operatorname{det}(X)|$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
|\operatorname{det}(X)|=|\operatorname{det}(\bar{X})|
$$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right|
\end{aligned}
$$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}}\left|\bar{X}_{i \pi(i)}\right|
\end{aligned}
$$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}}\left|\bar{X}_{i \pi(i)}\right| \\
& \leq n!\cdot 2^{\langle A\rangle+\langle b\rangle}
\end{aligned}
$$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}}\left|\bar{X}_{i \pi(i)}\right| \\
& \leq n!\cdot 2^{\langle A\rangle+\langle b\rangle} \leq 2^{L} .
\end{aligned}
$$

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}}\left|\bar{X}_{i \pi(i)}\right| \\
& \leq n!\cdot 2^{\langle A\rangle+\langle b\rangle} \leq 2^{L} .
\end{aligned}
$$

Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A with $\tilde{n} \leq n$.

Bounding the Determinant

Let $X=\bar{A}_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =|\operatorname{det}(\bar{X})| \\
& =\left|\sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}}\left|\bar{X}_{i \pi(i)}\right|_{\text {ind }} \text { iWhen com }
\end{aligned}
$$

Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A with $\tilde{n} \leq n$.

When computing the determinant of $\bar{X}=\overline{A_{B}}$

$$
\text { were introduced when transforming } A \text { into }
$$

$$
\text { standard form, i.e., into } \bar{A} \text {. }
$$

Such a column contains a single 1 and ' the remaining entries of the column are 0.1 I Therefore, these expansions do not increase, , the absolute value of the determinant. After ' we did expansions for all these columns we I are left with a square sub-matrix of A of size !
at most $n \times n$.

$$
\leq n!\cdot 2^{\langle A\rangle+\langle b\rangle} \leq 2^{L}: \text { we first do expansions along columns that }
$$

Analogously for $\operatorname{det}\left(A_{B}^{j}\right)$.

Reducing LP-solving to LP decision.

Reducing LP-solving to LP decision.

Given an $\operatorname{LP} \max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ do a binary search for the optimum solution

Reducing LP-solving to LP decision.

Given an $\operatorname{LP} \max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ do a binary search for the optimum solution
(Add constraint $c^{T} x \geq M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

Reducing LP-solving to LP decision.

Given an $\operatorname{LP} \max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ do a binary search for the optimum solution
(Add constraint $c^{T} x \geq M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$
\log _{2}\left(\frac{2 n 2^{2 L^{\prime}}}{1 / 2^{L^{\prime}}}\right)=\mathcal{O}\left(L^{\prime}\right)
$$

as the range of the search is at most $-n 2^{2 L^{\prime}}, \ldots, n 2^{2 L^{\prime}}$ and the distance between two adjacent values is at least $\frac{1}{\operatorname{det}(A)} \geq \frac{1}{2 L^{\prime}}$.

Reducing LP-solving to LP decision.

Given an LP max $\left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ do a binary search for the optimum solution
(Add constraint $c^{T} x \geq M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$
\log _{2}\left(\frac{2 n 2^{2 L^{\prime}}}{1 / 2^{L^{\prime}}}\right)=\mathcal{O}\left(L^{\prime}\right)
$$

as the range of the search is at most $-n 2^{2 L^{\prime}}, \ldots, n 2^{2 L^{\prime}}$ and the distance between two adjacent values is at least $\frac{1}{\operatorname{det}(A)} \geq \frac{1}{2 L^{\prime}}$.

Here we use $L^{\prime}=\langle A\rangle+\langle b\rangle+\langle c\rangle+n \log _{2} n$ (it also includes the encoding size of c).

How do we detect whether the LP is unbounded?

How do we detect whether the LP is unbounded?

Let $M_{\max }=n 2^{2 L^{\prime}}$ be an upper bound on the objective value of a basic feasible solution.

How do we detect whether the LP is unbounded?
Let $M_{\max }=n 2^{2 L^{\prime}}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^{T} x \geq M_{\max }+1$ and check for feasibility.

Ellipsoid Method

Ellipsoid Method

- Let K be a convex set.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E^{\prime} that contains $E \cap H$.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E^{\prime} that contains $E \cap H$.

Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E^{\prime} that contains $E \cap H$.
- REPEAT

Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

Definition 48
A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(x)=L x+t$, where L is an invertible matrix is called an affine transformation.

Definition 49

A ball in \mathbb{R}^{n} with center c and radius r is given by

$$
\begin{aligned}
B(c, r) & =\left\{x \mid(x-c)^{T}(x-c) \leq r^{2}\right\} \\
& =\left\{x \mid \sum_{i}(x-c)_{i}^{2} / r^{2} \leq 1\right\}
\end{aligned}
$$

$B(0,1)$ is called the unit ball.

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
f(B(0,1))
$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
f(B(0,1))=\{f(x) \mid x \in B(0,1)\}
$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\}
\end{aligned}
$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{T} L^{-1^{T}} L^{-1}(y-t) \leq 1\right\}
\end{aligned}
$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{T} L^{-1} L^{-1}(y-t) \leq 1\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{T} Q^{-1}(y-t) \leq 1\right\}
\end{aligned}
$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{T} L^{-1 T} L^{-1}(y-t) \leq 1\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{T} Q^{-1}(y-t) \leq 1\right\}
\end{aligned}
$$

where $Q=L L^{T}$ is an invertible matrix.

How to Compute the New Ellipsoid

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

The Easy Case

- The new center lies on axis x_{1}. Hence, $\hat{c}^{\prime}=t e_{1}$ for $t>0$.

The Easy Case

- The new center lies on axis x_{1}. Hence, $\hat{c}^{\prime}=t e_{1}$ for $t>0$.
- The vectors e_{1}, e_{2}, \ldots have to fulfill the ellipsoid constraint with equality. Hence $\left(e_{i}-\hat{c}^{\prime}\right)^{T} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$.

The Easy Case

- To obtain the matrix $\hat{Q}^{\prime^{-1}}$ for our ellipsoid \hat{E}^{\prime} note that \hat{E}^{\prime} is axis-parallel.

The Easy Case

- To obtain the matrix $\hat{Q}^{\prime^{-1}}$ for our ellipsoid \hat{E}^{\prime} note that \hat{E}^{\prime} is axis-parallel.
- Let a denote the radius along the x_{1}-axis and let b denote the (common) radius for the other axes.

The Easy Case

- To obtain the matrix $\hat{Q}^{\prime^{-1}}$ for our ellipsoid \hat{E}^{\prime} note that \hat{E}^{\prime} is axis-parallel.
- Let a denote the radius along the x_{1}-axis and let b denote the (common) radius for the other axes.
- The matrix

$$
\hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

maps the unit ball (via function $\hat{f}^{\prime}(x)=\hat{L}^{\prime} x$) to an axis-parallel ellipsoid with radius a in direction x_{1} and b in all other directions.

The Easy Case

- As $\hat{Q}^{\prime}=\hat{L}^{\prime} \hat{L}^{\prime t}$ the matrix $\hat{Q}^{\prime-1}$ is of the form

$$
\hat{Q}^{\prime-1}=\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right)
$$

The Easy Case

- $\left(e_{1}-\hat{c}^{\prime}\right)^{T} \hat{Q}^{\prime-1}\left(e_{1}-\hat{c}^{\prime}\right)=1$ gives

$$
\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)^{T} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $(1-t)^{2}=a^{2}$.

The Easy Case

- For $i \neq 1$ the equation $\left(e_{i}-\hat{c}^{\prime}\right)^{T} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$ looks like (here $i=2$)

$$
\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{T} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $\frac{t^{2}}{a^{2}}+\frac{1}{b^{2}}=1$, and hence

$$
\frac{1}{b^{2}}=1-\frac{t^{2}}{a^{2}}
$$

The Easy Case

- For $i \neq 1$ the equation $\left(e_{i}-\hat{c}^{\prime}\right)^{T} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$ looks like (here $i=2$)

$$
\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{T} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $\frac{t^{2}}{a^{2}}+\frac{1}{b^{2}}=1$, and hence

$$
\frac{1}{b^{2}}=1-\frac{t^{2}}{a^{2}}=1-\frac{t^{2}}{(1-t)^{2}}
$$

The Easy Case

- For $i \neq 1$ the equation $\left(e_{i}-\hat{c}^{\prime}\right)^{T} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$ looks like (here $i=2$)

$$
\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{T} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $\frac{t^{2}}{a^{2}}+\frac{1}{b^{2}}=1$, and hence

$$
\frac{1}{b^{2}}=1-\frac{t^{2}}{a^{2}}=1-\frac{t^{2}}{(1-t)^{2}}=\frac{1-2 t}{(1-t)^{2}}
$$

Summary

So far we have

$$
a=1-t \quad \text { and } \quad b=\frac{1-t}{\sqrt{1-2 t}}
$$

The Easy Case

We still have many choices for t :

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

The Easy Case

We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

The Easy Case

We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

Lemma 51
Let L be an affine transformation and $K \subseteq \mathbb{R}^{n}$. Then

$$
\operatorname{vol}(L(K))=|\operatorname{det}(L)| \cdot \operatorname{vol}(K) .
$$

n-dimensional volume

The Easy Case

- We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|,
$$

The Easy Case

- We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|
$$

- Recall that

$$
\hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

The Easy Case

- We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|
$$

- Recall that

$$
\hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

- Note that a and b in the above equations depend on t, by the previous equations.

The Easy Case

$\operatorname{vol}\left(\hat{E}^{\prime}\right)$

The Easy Case

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|
$$

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot(1-t) \cdot\left(\frac{1-t}{\sqrt{1-2 t}}\right)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot(1-t) \cdot\left(\frac{1-t}{\sqrt{1-2 t}}\right)^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot(1-t) \cdot\left(\frac{1-t}{\sqrt{1-2 t}}\right)^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}
\end{aligned}
$$

We use the shortcut $\Phi:=\operatorname{vol}(B(0,1))$.

The Easy Case

$$
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}
$$

The Easy Case

$$
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right)
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
& =\frac{\Phi}{N^{2}} \\
N & =\text { denominator }
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
& =\frac{\Phi}{N^{2}} \cdot\left(\begin{array}{l}
(-1) \cdot n(1-t)^{n-1} \\
\text { derivative of numerator }
\end{array}\right.
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
&=\frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \text { denominator }
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& -(n-1)(\sqrt{1-2 t})^{n-2} \\
& \text { outer derivative }
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
&= \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
&-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \\
& \text { inner derivative }
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
&= \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
&-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{n} \\
& \text { numerator }
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{n}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{n}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{n}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{n}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.-(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{\pi}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.\nsucc(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{\pi}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= & \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
= & \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot(\sqrt{1-2 t})^{n-1}\right. \\
& \left.\nsucc(n-1)(\sqrt{1-2 t})^{n-2} \cdot \frac{1}{2 \sqrt{1-2 t}} \cdot(-2) \cdot(1-t)^{\pi}\right) \\
= & \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1} \\
& \cdot((n-1)(1-t)-n(1-2 t))
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}= \frac{\mathrm{d}}{\mathrm{~d} t}\left(\Phi \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right) \\
&= \frac{\Phi}{N^{2}} \cdot\left((-1) \cdot n(1-t)^{n-1} \cdot \frac{(\sqrt{1-2 t})^{n-1}}{1-2 t}\right. \\
& \nsucc(n-1)(\sqrt{1-2 t})^{n-2} \\
&\left.2 \sqrt{1-2 t} \cdot(-2) \cdot(1-t)^{\pi}\right) \\
&= \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1} \\
& \cdot((n-1)(1-t)-n(1-2 t)) \\
&= \frac{\Phi}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1} \cdot((n+1) t-1)
\end{aligned}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}=\frac{\left(1-\frac{1}{n+1}\right)^{2}}{1-\frac{2}{n+1}}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}=\frac{\left(1-\frac{1}{n+1}\right)^{2}}{1-\frac{2}{n+1}}=\frac{\left(\frac{n}{n+1}\right)^{2}}{\frac{n-1}{n+1}}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}=\frac{\left(1-\frac{1}{n+1}\right)^{2}}{1-\frac{2}{n+1}}=\frac{\left(\frac{n}{n+1}\right)^{2}}{\frac{n-1}{n+1}}=\frac{n^{2}}{n^{2}-1}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\gamma_{n}^{2}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\gamma_{n}^{2}=\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1}
\end{aligned}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}
\end{aligned}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\
& =e^{-\frac{1}{n+1}}
\end{aligned}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\
& =e^{-\frac{1}{n+1}}
\end{aligned}
$$

where we used $(1+x)^{a} \leq e^{a x}$ for $x \in \mathbb{R}$ and $a>0$.

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\
& =e^{-\frac{1}{n+1}}
\end{aligned}
$$

where we used $(1+x)^{a} \leq e^{a x}$ for $x \in \mathbb{R}$ and $a>0$.
This gives $\gamma_{n} \leq e^{-\frac{1}{2(n+1)}}$.

How to Compute the New Ellipsoid

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

Our progress is the same:

$$
e^{-\frac{1}{2(n+1)}}
$$

Our progress is the same:

$$
e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}
$$

Our progress is the same:

$$
e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}
$$

Our progress is the same:

$$
e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))}
$$

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}
\end{aligned}
$$

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}=\frac{\operatorname{vol}\left(f\left(\bar{E}^{\prime}\right)\right)}{\operatorname{vol}(f(\bar{E}))}
\end{aligned}
$$

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}=\frac{\operatorname{vol}\left(f\left(\bar{E}^{\prime}\right)\right)}{\operatorname{vol}(f(\bar{E}))}=\frac{\operatorname{vol}\left(E^{\prime}\right)}{\operatorname{vol}(E)}
\end{aligned}
$$

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}=\frac{\operatorname{vol}\left(f\left(\bar{E}^{\prime}\right)\right)}{\operatorname{vol}(f(\bar{E}))}=\frac{\operatorname{vol}\left(E^{\prime}\right)}{\operatorname{vol}(E)}
\end{aligned}
$$

Here it is important that mapping a set with affine function $f(x)=L x+t$ changes the volume by factor $\operatorname{det}(L)$.

The Ellipsoid Algorithm

How to compute the new parameters?

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
f^{-1}(H)=\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\}
$$

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \leq 0\right\}
\end{aligned}
$$

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(f(y)-c) \leq 0\right\}
\end{aligned}
$$

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(L y+c-c) \leq 0\right\}
\end{aligned}
$$

The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(L y+c-c) \leq 0\right\} \\
& =\left\{y \mid\left(a^{T} L\right) y \leq 0\right\}
\end{aligned}
$$

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{T}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{T}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{T}(L y+c-c) \leq 0\right\} \\
& =\left\{y \mid\left(a^{T} L\right) y \leq 0\right\}
\end{aligned}
$$

This means $\bar{a}=L^{T} a$.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\begin{gathered}
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|} \\
c^{\prime}=f\left(\bar{c}^{\prime}\right)
\end{gathered}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\begin{gathered}
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|} \\
c^{\prime}=f\left(\bar{c}^{\prime}\right)=L \cdot \bar{c}^{\prime}+c
\end{gathered}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|}
$$

$$
\begin{aligned}
c^{\prime} & =f\left(\bar{c}^{\prime}\right)=L \cdot \bar{c}^{\prime}+c \\
& =-\frac{1}{n+1} L \frac{L^{T} a}{\left\|L^{T} a\right\|}+c
\end{aligned}
$$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{T} a}{\left\|L^{T} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{T} a}{\left\|L^{T} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{T} a}{\left\|L^{T} a\right\|}
$$

$$
\begin{aligned}
c^{\prime} & =f\left(\bar{c}^{\prime}\right)=L \cdot \bar{c}^{\prime}+c \\
& =-\frac{1}{n+1} L \frac{L^{T} a}{\left\|L^{T} a\right\|}+c \\
& =c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{T} Q a}}
\end{aligned}
$$

For computing the matrix Q^{\prime} of the new ellipsoid we assume in the following that $\hat{E}^{\prime}, \bar{E}^{\prime}$ and E^{\prime} refer to the ellispoids centered in the origin.

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right)
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right)
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \begin{aligned}
& \text { Note that } e_{1} e_{1}^{T} \text { is a matrix } \\
& M \text { that has } M_{11}=1 \text { and all } \\
& \text { other entries equal to } 0 .
\end{aligned}
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

$$
b^{2}-b^{2} \frac{2}{n+1}
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \begin{aligned}
& \text { Note that } e_{1} e_{1}^{T} \text { is a matrix } \\
& M \text { that has } M_{11}=1 \text { and all } \\
& \text { other entries equal to } 0 .
\end{aligned}
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

$$
b^{2}-b^{2} \frac{2}{n+1}=\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}}
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \begin{aligned}
& \text { Note that } e_{1} e_{1}^{T} \text { is a matrix } \\
& M \text { that has } M_{11}=1 \text { and all } \\
& \text { other entries equal to } 0 .
\end{aligned}
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

$$
\begin{aligned}
b^{2}-b^{2} \frac{2}{n+1} & =\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}} \\
& =\frac{n^{2}(n+1)-2 n^{2}}{(n-1)(n+1)^{2}}
\end{aligned}
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \begin{aligned}
& \text { Note that } e_{1} e_{1}^{T} \text { is a matrix } \\
& M \text { that has } M_{11}=1 \text { and all } \\
& \text { other entries equal to } 0 .
\end{aligned}
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

$$
\begin{aligned}
b^{2}-b^{2} \frac{2}{n+1} & =\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}} \\
& =\frac{n^{2}(n+1)-2 n^{2}}{(n-1)(n+1)^{2}}=\frac{n^{2}(n-1)}{(n-1)(n+1)^{2}}
\end{aligned}
$$

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \begin{aligned}
& \text { Note that } e_{1} e_{1}^{T} \text { is a matrix } \\
& M \text { that has } M_{11}=1 \text { and all } \\
& \text { other entries equal to } 0 .
\end{aligned}
$$

because for $a^{2}=n^{2} /(n+1)^{2}$ and $b^{2}=n^{2} / n^{2}-1$

$$
\begin{aligned}
b^{2}-b^{2} \frac{2}{n+1} & =\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}} \\
& =\frac{n^{2}(n+1)-2 n^{2}}{(n-1)(n+1)^{2}}=\frac{n^{2}(n-1)}{(n-1)(n+1)^{2}}=a^{2}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\bar{E}^{\prime}
$$

9 The Ellipsoid Algorithm

$$
\bar{E}^{\prime}=R\left(\hat{E}^{\prime}\right)
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{T} \hat{Q}^{\prime-1} x \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{T} \hat{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(R^{-1} y\right)^{T} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{T} \hat{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(R^{-1} y\right)^{T} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{T}\left(R^{T}\right)^{-1} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{T} \hat{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(R^{-1} y\right)^{T} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{T}\left(R^{T}\right)^{-1} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\{y \mid y^{T}(\underbrace{\left(\hat{Q}^{\prime} R^{T}\right.}_{\hat{Q}^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence, \bar{Q}^{\prime}

[^2]
9 The Ellipsoid Algorithm

Hence,

$$
\bar{Q}^{\prime}=R \hat{Q}^{\prime} R^{T}
$$

Here we used the equation for $R e_{1}$ proved before, and the fact that $R R^{T}=I$, which holds for ' any rotation matrix. To see this observe that the length of a rotated vector x should not change, ' i.e.,

$$
x^{T} I x=(R x)^{T}(R x)=x^{T}\left(R^{T} R\right) x
$$

which means $x^{T}\left(I-R^{T} R\right) x=0$ for every vector x. It is easy to see that this can only be fulfilled if $I-R^{T} R=0$.

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
\bar{Q}^{\prime} & =R \hat{Q}^{\prime} R^{T} \\
& =R \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \cdot R^{T}
\end{aligned}
$$

Here we used the equation for $R e_{1}$ proved before, and the fact that $R R^{T}=I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, ' i.e.,

$$
x^{T} I x=(R x)^{T}(R x)=x^{T}\left(R^{T} R\right) x
$$

which means $x^{T}\left(I-R^{T} R\right) x=0$ for every vector x. It is easy to see that this can only be fulfilled if $I-R^{T} R=0$.

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
\bar{Q}^{\prime} & =R \hat{Q}^{\prime} R^{T} \\
& =R \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \cdot R^{T} \\
& =\frac{n^{2}}{n^{2}-1}\left(R \cdot R^{T}-\frac{2}{n+1}\left(R e_{1}\right)\left(R e_{1}\right)^{T}\right)
\end{aligned}
$$

Here we used the equation for $R e_{1}$ proved before, and the fact that $R R^{T}=I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$
x^{T} I x=(R x)^{T}(R x)=x^{T}\left(R^{T} R\right) x
$$

which means $x^{T}\left(I-R^{T} R\right) x=0$ for every vector x. It is easy to see that this can only be fulfilled if $I-R^{T} R=0$.

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
\bar{Q}^{\prime} & =R \hat{Q}^{\prime} R^{T} \\
& =R \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) \cdot R^{T} \\
& =\frac{n^{2}}{n^{2}-1}\left(R \cdot R^{T}-\frac{2}{n+1}\left(R e_{1}\right)\left(R e_{1}\right)^{T}\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{T} a a^{T} L}{\left\|L^{T} a\right\|^{2}}\right)
\end{aligned}
$$

Here we used the equation for $R e_{1}$ proved before, and the fact that $R R^{T}=I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$
x^{T} I x=(R x)^{T}(R x)=x^{T}\left(R^{T} R\right) x
$$

which means $x^{T}\left(I-R^{T} R\right) x=0$ for every vector x. It is easy to see that this can only be fulfilled if $I-R^{T} R=0$.

9 The Ellipsoid Algorithm

E^{\prime}

9 The Ellipsoid Algorithm

$$
E^{\prime}=L\left(\bar{E}^{\prime}\right)
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{T} \bar{Q}^{\prime-1} x \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{T} \bar{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(L^{-1} y\right)^{T} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{T} \bar{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(L^{-1} y\right)^{T} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{T}\left(L^{T}\right)^{-1} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{T} \bar{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(L^{-1} y\right)^{T} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{T}\left(L^{T}\right)^{-1} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\{y \mid y^{T}(\underbrace{L \bar{Q}^{\prime} L^{T}}_{Q^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
Q^{\prime}
$$

9 The Ellipsoid Algorithm

Hence,

$$
Q^{\prime}=L \bar{Q}^{\prime} L^{T}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
Q^{\prime} & =L \bar{Q}^{\prime} L^{T} \\
& =L \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{T} a a^{T} L}{a^{T} Q a}\right) \cdot L^{T}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
Q^{\prime} & =L \bar{Q}^{\prime} L^{T} \\
& =L \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{T} a a^{T} L}{a^{T} Q a}\right) \cdot L^{T} \\
& =\frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{T} Q}{a^{T} Q a}\right)
\end{aligned}
$$

Incomplete Algorithm

```
Algorithm 1 ellipsoid-algorithm
    1: input: point \(c \in \mathbb{R}^{n}\), convex set \(K \subseteq \mathbb{R}^{n}\)
    2: output: point \(x \in K\) or " \(K\) is empty"
    3: \(Q \leftarrow\) ???
    4: repeat
    5: \(\quad\) if \(c \in K\) then return \(c\)
    6: else
                                    choose a violated hyperplane \(a\)
    8: \(\quad c \leftarrow c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{T} Q a}}\)
    9:
                                \(Q \leftarrow \frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{T} Q}{a^{T} Q a}\right)\)
10: endif
11: until ???
12: return " \(K\) is empty"
```


Repeat: Size of basic solutions

Lemma 52
Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a bounded polyhedron. Let $L:=2\langle A\rangle+\langle b\rangle+2 n\left(1+\log _{2} n\right)$. Then every entry x_{j} in a basic solution fulfills $\left|x_{j}\right|=\frac{D_{j}}{D}$ with $D_{j}, D \leq 2^{L}$.

Repeat: Size of basic solutions

Lemma 52
Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a bounded polyhedron. Let
$L:=2\langle A\rangle+\langle b\rangle+2 n\left(1+\log _{2} n\right)$. Then every entry x_{j} in a basic solution fulfills $\left|x_{j}\right|=\frac{D_{j}}{D}$ with $D_{j}, D \leq 2^{L}$.

In the following we use $\delta:=2^{L}$.

Proof:

We can replace P by $P^{\prime}:=\left\{x \mid A^{\prime} x \leq b ; x \geq 0\right\}$ where $A^{\prime}=[A-A]$. The lemma follows by applying Lemma 47, and observing that $\left\langle A^{\prime}\right\rangle=2\langle A\rangle$ and $n^{\prime}=2 n$.

How do we find the first ellipsoid?

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.
Hence, P is contained in the cube $-\delta \leq x_{i} \leq \delta$.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.
Hence, P is contained in the cube $-\delta \leq x_{i} \leq \delta$.
A vector in this cube has at most distance $R:=\sqrt{n} \delta$ from the origin.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.
Hence, P is contained in the cube $-\delta \leq x_{i} \leq \delta$.
A vector in this cube has at most distance $R:=\sqrt{n} \delta$ from the origin.

Starting with the ball $E_{0}:=B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^{n} \operatorname{vol}(B(0,1)) \leq(n \delta)^{n} \operatorname{vol}(B(0,1))$.

When can we terminate?

When can we terminate?

Let $P:=\{x \mid A x \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

When can we terminate?

Let $P:=\{x \mid A x \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$
P_{\lambda}:=\left\{x \left\lvert\, A x \leq b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right.\right\},
$$

where $\lambda=\delta^{2}+1$.
Note that the volume of P_{λ} cannot be 0

Making P full-dimensional

Lemma 53
P_{λ} is feasible if and only if P is feasible.

Making P full-dimensional

Lemma 53
P_{λ} is feasible if and only if P is feasible.
\Longleftarrow : obvious!

Making P full-dimensional

\Longrightarrow :

Making P full-dimensional

$$
\Longrightarrow:
$$

Consider the polyhedrons

$$
\bar{P}=\left\{x \mid\left[A-A I_{m}\right] x=b ; x \geq 0\right\}
$$

and

$$
\bar{P}_{\lambda}=\left\{x \left\lvert\,\left[A-A I_{m}\right] x=b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right. ; x \geq 0\right\}
$$

Making P full-dimensional

\Rightarrow :
Consider the polyhedrons

$$
\bar{P}=\left\{x \mid\left[A-A I_{m}\right] x=b ; x \geq 0\right\}
$$

and

$$
\bar{P}_{\lambda}=\left\{x \left\lvert\,\left[A-A I_{m}\right] x=b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right. ; x \geq 0\right\}
$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

Making P full-dimensional

\Longrightarrow :
Consider the polyhedrons

$$
\bar{P}=\left\{x \mid\left[A-A I_{m}\right] x=b ; x \geq 0\right\}
$$

and

$$
\bar{P}_{\lambda}=\left\{x \left\lvert\,\left[A-A I_{m}\right] x=b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right. ; x \geq 0\right\}
$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.
\bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Making P full-dimensional

$$
\text { Let } \bar{A}=\left[A-A I_{m}\right] \text {. }
$$

\bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$
x_{B}=\bar{A}_{B}^{-1} b+\frac{1}{\lambda} \bar{A}_{B}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(The other x-values are zero)

Making P full-dimensional

$$
\text { Let } \bar{A}=\left[A-A I_{m}\right] \text {. }
$$

\bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$
x_{B}=\bar{A}_{B}^{-1} b+\frac{1}{\lambda} \bar{A}_{B}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(The other x-values are zero)
The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Making P full-dimensional

$$
\text { Let } \bar{A}=\left[A-A I_{m}\right] \text {. }
$$

\bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$
x_{B}=\bar{A}_{B}^{-1} b+\frac{1}{\lambda} \bar{A}_{B}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(The other x-values are zero)
The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$
\left(\bar{A}_{B}^{-1} b\right)_{i}<0 \leq\left(\bar{A}_{B}^{-1} b\right)_{i}+\frac{1}{\lambda}\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i}
$$

Making P full-dimensional

By Cramers rule we get

$$
\left(\bar{A}_{B}^{-1} b\right)_{i}<0 \quad \Rightarrow \quad\left(\bar{A}_{B}^{-1} b\right)_{i} \leq-\frac{1}{\operatorname{det}\left(\bar{A}_{B}\right)} \leq-1 / \delta
$$

and

$$
\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i} \leq \operatorname{det}\left(\bar{A}_{B}^{j}\right) \leq \delta,
$$

where \bar{A}_{B}^{j} is obtained by replacing the j-th column of \bar{A}_{B} by $\overrightarrow{1}$.

Making P full-dimensional

By Cramers rule we get

$$
\left(\bar{A}_{B}^{-1} b\right)_{i}<0 \quad \Rightarrow \quad\left(\bar{A}_{B}^{-1} b\right)_{i} \leq-\frac{1}{\operatorname{det}\left(\bar{A}_{B}\right)} \leq-1 / \delta
$$

and

$$
\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i} \leq \operatorname{det}\left(\bar{A}_{B}^{j}\right) \leq \delta,
$$

where \bar{A}_{B}^{j} is obtained by replacing the j-th column of \bar{A}_{B} by $\overrightarrow{1}$.
But then

$$
\left(\bar{A}_{B}^{-1} b\right)_{i}+\frac{1}{\lambda}\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i} \leq-1 / \delta+\delta / \lambda<0
$$

as we chose $\lambda=\delta^{2}+1$. Contradiction.

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Lemma 54
If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

Lemma 54
If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.

Lemma 54
If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
(A(x+\vec{\ell}))_{i}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
(A(x+\vec{\ell}))_{i}=(A x)_{i}+(A \vec{\ell})_{i}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
(A(x+\vec{\ell}))_{i}=(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
(A(x+\vec{\ell}))_{i} & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell} \\
& \leq b_{i}+\left\|\vec{a}_{i}\right\| \cdot\|\vec{\ell}\|
\end{aligned}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
(A(x+\vec{\ell}))_{i} & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell} \\
& \leq b_{i}+\left\|\vec{a}_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r
\end{aligned}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
(A(x+\vec{\ell}))_{i} & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell} \\
& \leq b_{i}+\left\|\vec{a}_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r \\
& \leq b_{i}+\frac{\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}}{\delta^{3}}
\end{aligned}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
\left(A(x+\vec{\ell})_{i}\right. & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell} \\
& \leq b_{i}+\left\|\vec{a}_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r \\
& \leq b_{i}+\frac{\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}}{\delta^{3}} \leq b_{i}+\frac{1}{\delta^{2}+1} \leq b_{i}+\frac{1}{\lambda}
\end{aligned}
$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
\left(A(x+\vec{\ell})_{i}\right. & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+\vec{a}_{i}^{T} \vec{\ell} \\
& \leq b_{i}+\left\|\vec{a}_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r \\
& \leq b_{i}+\frac{\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}}{\delta^{3}} \leq b_{i}+\frac{1}{\delta^{2}+1} \leq b_{i}+\frac{1}{\lambda}
\end{aligned}
$$

Hence, $x+\vec{\ell}$ is feasible for P_{λ} which proves the lemma.

How many iterations do we need until the volume becomes too small?

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,
i

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
i>2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}(B(0, r))}\right)
$$

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
\begin{aligned}
i & >2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}(B(0, r))}\right) \\
& =2(n+1) \ln \left(n^{n} \delta^{n} \cdot \delta^{3 n}\right)
\end{aligned}
$$

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
\begin{aligned}
i & >2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}(B(0, r))}\right) \\
& =2(n+1) \ln \left(n^{n} \delta^{n} \cdot \delta^{3 n}\right) \\
& =8 n(n+1) \ln (\delta)+2(n+1) n \ln (n)
\end{aligned}
$$

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
\begin{aligned}
i & >2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{Vol}(B(0, r))}\right) \\
& =2(n+1) \ln \left(n^{n} \delta^{n} \cdot \delta^{3 n}\right) \\
& =8 n(n+1) \ln (\delta)+2(n+1) n \ln (n) \\
& =\mathcal{O}(\operatorname{poly}(n) \cdot L)
\end{aligned}
$$

Algorithm 1 ellipsoid-algorithm
1: input: point $c \in \mathbb{R}^{n}$, convex set $K \subseteq \mathbb{R}^{n}$, radii R and r
2: \quad with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x
3: output: point $x \in K$ or " K is empty"
4: $Q \leftarrow \operatorname{diag}\left(R^{2}, \ldots, R^{2}\right) / /$ i.e., $L=\operatorname{diag}(R, \ldots, R)$
5: repeat
6: \quad if $c \in K$ then return c
7: else
8: \quad choose a violated hyperplane a
9:
$c \leftarrow c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{T} Q a}}$
$Q \leftarrow \frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{T} Q}{a^{T} Q a}\right)$
11: endif
12: until $\operatorname{det}(Q) \leq r^{2 n} / /$ i.e., $\operatorname{det}(L) \leq r^{n}$
13: return " K is empty"

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $B(c, R)$ with radius R that contains K,

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $B(c, R)$ with radius R that contains K,
- a separation oracle for K.

Separation Oracle

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $B(c, R)$ with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log (R / r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

(1)

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm

Example

Example

9 The Ellipsoid Algorithm

Example

9 The Ellipsoid Algorithm
9. Jul. 2022

217/462

10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}

10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}
- $P=\{x \mid A x \leq b\} ; P^{\circ}:=\{x \mid A x<b\}$

10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}
- $P=\{x \mid A x \leq b\} ; P^{\circ}:=\{x \mid A x<b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm

10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}
- $P=\{x \mid A x \leq b\} ; P^{\circ}:=\{x \mid A x<b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

$$
s_{i}(x):=b_{i}-a_{i}^{T} x
$$

as the slack of the i-th constraint

10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}
- $P=\{x \mid A x \leq b\} ; P^{\circ}:=\{x \mid A x<b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

$$
s_{i}(x):=b_{i}-a_{i}^{T} x
$$

as the slack of the i-th constraint
logarithmic barrier function:

$$
\phi(x)=-\sum_{i=1}^{m} \ln \left(s_{i}(x)\right)
$$

Penalty for point x; points close to the boundary have a very large penalty.

Penalty Function

Penalty Function

Gradient and Hessian

Taylor approximation:

$$
\phi(x+\epsilon) \approx \phi(x)+\nabla \phi(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} \nabla^{2} \phi(x) \epsilon
$$

Gradient and Hessian

Taylor approximation:

$$
\phi(x+\epsilon) \approx \phi(x)+\nabla \phi(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} \nabla^{2} \phi(x) \epsilon
$$

Gradient:

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)} \cdot a_{i}=A^{T} d_{x}
$$

where $d_{x}^{T}=\left(1 / s_{1}(x), \ldots, 1 / s_{m}(x)\right)$. (d_{x} vector of inverse slacks)

Gradient and Hessian

Taylor approximation:

$$
\phi(x+\epsilon) \approx \phi(x)+\nabla \phi(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} \nabla^{2} \phi(x) \epsilon
$$

Gradient:

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)} \cdot a_{i}=A^{T} d_{x}
$$

where $d_{x}^{T}=\left(1 / s_{1}(x), \ldots, 1 / s_{m}(x)\right)$. (d_{x} vector of inverse slacks)

Hessian:

$$
H_{x}:=\nabla^{2} \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)^{2}} a_{i} a_{i}^{T}=A^{T} D_{x}^{2} A
$$

with $D_{x}=\operatorname{diag}\left(d_{x}\right)$.

Proof for Gradient

$$
\begin{aligned}
\frac{\partial \phi(x)}{\partial x_{i}} & =\frac{\partial}{\partial x_{i}}\left(-\sum_{r} \ln \left(s_{r}(x)\right)\right) \\
& =-\sum_{r} \frac{\partial}{\partial x_{i}}\left(\ln \left(s_{r}(x)\right)\right)=-\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(s_{r}(x)\right) \\
& =-\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(b_{r}-a_{r}^{T} x\right)=\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(a_{r}^{T} x\right) \\
& =\sum_{r} \frac{1}{s_{r}(x)} A_{r i}
\end{aligned}
$$

The i-th entry of the gradient vector is $\sum_{r} 1 / s_{r}(x) \cdot A_{r i}$. This gives that the gradient is

$$
\nabla \phi(x)=\sum_{r} 1 / s_{r}(x) a_{r}=A^{T} d_{x}
$$

Proof for Hessian

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left(\sum_{r} \frac{1}{s_{r}(x)} A_{r i}\right) & =\sum_{r} A_{r i}\left(-\frac{1}{s_{r}(x)^{2}}\right) \cdot \frac{\partial}{\partial x_{j}}\left(s_{r}(x)\right) \\
& =\sum_{r} A_{r i} \frac{1}{s_{r}(x)^{2}} A_{r j}
\end{aligned}
$$

Note that $\sum_{r} A_{r i} A_{r j}=\left(A^{T} A\right)_{i j}$. Adding the additional factors $1 / s_{r}(x)^{2}$ can be done with a diagonal matrix.

Hence the Hessian is

$$
H_{x}=A^{T} D^{2} A
$$

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

This gives that $\phi(x)$ is convex.

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

This gives that $\phi(x)$ is convex.

If $\operatorname{rank}(A)=n, H_{x}$ is positive definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=\left\|D_{x} A u\right\|_{2}^{2}>0 \text { for } u \neq 0
$$

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

This gives that $\phi(x)$ is convex.

If $\operatorname{rank}(A)=n, H_{x}$ is positive definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=\left\|D_{x} A u\right\|_{2}^{2}>0 \text { for } u \neq 0
$$

This gives that $\phi(x)$ is strictly convex.

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

This gives that $\phi(x)$ is convex.

If $\operatorname{rank}(A)=n, H_{x}$ is positive definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=\left\|D_{x} A u\right\|_{2}^{2}>0 \text { for } u \neq 0
$$

This gives that $\phi(x)$ is strictly convex.
$\|u\|_{H_{X}}:=\sqrt{u^{T} H_{\chi} u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in $E_{\boldsymbol{x}}$ are feasible!!!

$$
(y-x)^{T} H_{x}(y-x)
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in $E_{\boldsymbol{x}}$ are feasible!!!

$$
(y-x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x)
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in E_{x} are feasible!!!

$$
\begin{aligned}
& (y-x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x) \\
& \quad=\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{s_{i}(x)^{2}}
\end{aligned}
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in $E_{\boldsymbol{x}}$ are feasible!!!

$$
\begin{aligned}
(y & -x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x) \\
& =\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{s_{i}(x)^{2}} \\
& =\sum_{i=1}^{m} \frac{(\text { change of distance to } i \text {-th constraint going from } x \text { to } y)^{2}}{(\text { distance of } x \text { to } i \text {-th constraint })^{2}}
\end{aligned}
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in $E_{\boldsymbol{x}}$ are feasible!!!

$$
\begin{aligned}
(y & -x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x) \\
& =\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{s_{i}(x)^{2}} \\
& =\sum_{i=1}^{m} \frac{(\text { change of distance to } i \text {-th constraint going from } x \text { to } y)^{2}}{(\text { distance of } x \text { to } i \text {-th constraint })^{2}} \\
& \leq 1
\end{aligned}
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in $E_{\boldsymbol{x}}$ are feasible!!!

$$
\begin{aligned}
(y & -x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x) \\
& =\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{s_{i}(x)^{2}} \\
& =\sum_{i=1}^{m} \frac{(\text { change of distance to } i \text {-th constraint going from } x \text { to } y)^{2}}{(\text { distance of } x \text { to } i \text {-th constraint) })^{2}} \\
& \leq 1
\end{aligned}
$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1 .

Dikin Ellipsoids

10 Karmarkars Algorithm
9. Jul. 2022

226/462

Analytic Center

$$
x_{\mathrm{ac}}:=\arg \min _{x \in P^{\circ}} \phi(x)
$$

- x_{ac} is solution to

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)} a_{i}=0
$$

- depends on the description of the polytope
- x_{ac} exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly feasible and that $\operatorname{rank}(A)=n$.

Central Path

In the following we assume that the LP and its dual are strictly feasible and that $\operatorname{rank}(A)=n$.

Central Path:
Set of points $\left\{x^{*}(t) \mid t>0\right\}$ with

$$
x^{*}(t)=\operatorname{argmin}_{x}\left\{t c^{T} x+\phi(x)\right\}
$$

Central Path

In the following we assume that the LP and its dual are strictly feasible and that $\operatorname{rank}(A)=n$.

Central Path:
Set of points $\left\{x^{*}(t) \mid t>0\right\}$ with

$$
x^{*}(t)=\operatorname{argmin}_{x}\left\{t c^{T} x+\phi(x)\right\}
$$

- $t=0$: analytic center
- $t=\infty$: optimum solution
$x^{*}(t)$ exists and is unique for all $t \geq 0$.

Different Central Paths

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- Is this really true? How large a t do we need?
- How do we find corresponding point $x^{*}(t)$ on central path?

The Dual

primal-dual pair:

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

$$
\begin{aligned}
\max & -b^{T} z \\
\text { s.t. } & A^{T} z+c=0 \\
& z \geq 0
\end{aligned}
$$

Assumptions

- primal and dual problems are strictly feasible;
- $\operatorname{rank}(A)=n$.

Force Field Interpretation

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- In addition there is a force $t c$ pulling us towards the optimum solution.

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

or

$$
c+\sum_{i=1}^{m} z_{i}^{*}(t) a_{i}=0 \text { with } z_{i}^{*}(t)=\frac{1}{t s_{i}\left(x^{*}(t)\right)}
$$

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

or

$$
c+\sum_{i=1}^{m} z_{i}^{*}(t) a_{i}=0 \text { with } z_{i}^{*}(t)=\frac{1}{t s_{i}\left(x^{*}(t)\right)}
$$

- $z^{*}(t)$ is strictly dual feasible: $\left(A^{T} z^{*}+c=0 ; z^{*}>0\right)$

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

or

$$
c+\sum_{i=1}^{m} z_{i}^{*}(t) a_{i}=0 \text { with } z_{i}^{*}(t)=\frac{1}{t s_{i}\left(x^{*}(t)\right)}
$$

- $z^{*}(t)$ is strictly dual feasible: $\left(A^{T} z^{*}+c=0 ; z^{*}>0\right)$
- duality gap between $x:=x^{*}(t)$ and $z:=z^{*}(t)$ is

$$
c^{T} x+b^{T} z=(b-A x)^{T} z=\frac{m}{t}
$$

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

or

$$
c+\sum_{i=1}^{m} z_{i}^{*}(t) a_{i}=0 \text { with } z_{i}^{*}(t)=\frac{1}{t s_{i}\left(x^{*}(t)\right)}
$$

- $z^{*}(t)$ is strictly dual feasible: $\left(A^{T} z^{*}+c=0 ; z^{*}>0\right)$
- duality gap between $x:=x^{*}(t)$ and $z:=z^{*}(t)$ is

$$
c^{T} x+b^{T} z=(b-A x)^{T} z=\frac{m}{t}
$$

- if gap is less than $1 / 2^{\Omega(L)}$ we can snap to optimum point

How to find $x^{*}(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_{t}(x):=t c^{T} x+\phi(x)$

Newton Method

Quadratic approximation of f_{t}

$$
f_{t}(x+\epsilon) \approx f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Newton Method

Quadratic approximation of f_{t}

$$
f_{t}(x+\epsilon) \approx f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Suppose this were exact:

$$
f_{t}(x+\epsilon)=f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Newton Method

Quadratic approximation of f_{t}

$$
f_{t}(x+\epsilon) \approx f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Suppose this were exact:

$$
f_{t}(x+\epsilon)=f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Then gradient is given by:

$$
\nabla f_{t}(x+\epsilon)=\nabla f_{t}(x)+H_{f_{t}}(x) \cdot \epsilon
$$

iNote that for the one-dimensional case
$g(\epsilon)=f(x)+f^{\prime}(x) \epsilon+\frac{1}{2} f^{\prime \prime}(x) \epsilon^{2}$, then $g^{\prime}(\epsilon)=f^{\prime}(x)+f^{\prime \prime}(x) \epsilon$.

Newton Method

Observe that $H_{f_{t}}(x)=H(x)$, where $H(x)$ is the Hessian for the function $\phi(x)$ (adding a linear term like $t c^{T} x$; does not affect the Hessian).

Also $\nabla f_{t}(x)=t c+\nabla \phi(x)$.
We want to move to a point where this gradient is $\overline{0} \overline{0}^{-}$
Newton Step at $x \in P^{\circ}$

$$
\begin{aligned}
\Delta x_{\mathrm{nt}} & =-H_{f_{t}}^{-1}(x) \nabla f_{t}(x) \\
& =-H_{f_{t}}^{-1}(x)(t c+\nabla \phi(x)) \\
& =-\left(A^{T} D_{x}^{2} A\right)^{-1}\left(t c+A^{T} d_{x}\right)
\end{aligned}
$$

Newton Iteration:

$$
x:=x+\Delta x_{\mathrm{nt}}
$$

Measuring Progress of Newton Step

Newton decrement:

$$
\begin{aligned}
\lambda_{t}(x) & =\left\|D_{x} A \Delta x_{\mathrm{nt}}\right\| \\
& =\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}
\end{aligned}
$$

Measuring Progress of Newton Step

Newton decrement:

$$
\begin{aligned}
\lambda_{t}(x) & =\left\|D_{x} A \Delta x_{\mathrm{nt}}\right\| \\
& =\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}
\end{aligned}
$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$
-\lambda_{t}(x)^{2}=\nabla f_{t}(x)^{T} \Delta x_{\mathrm{nt}}
$$

Measuring Progress of Newton Step

Newton decrement:

$$
\begin{aligned}
\lambda_{t}(x) & =\left\|D_{x} A \Delta x_{\mathrm{nt}}\right\| \\
& =\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}
\end{aligned}
$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$
-\lambda_{t}(x)^{2}=\nabla f_{t}(x)^{T} \Delta x_{\mathrm{nt}}
$$

- $\lambda_{t}(x)=0$ iff $x=x^{*}(t)$
- $\lambda_{t}(x)$ is measure of proximity of x to $x^{*}(t)$

Convergence of Newtons Method

Theorem 55
If $\lambda_{t}(x)<1$ then

- $x_{+}:=x+\Delta x_{n t} \in P^{\circ}$ (new point feasible)
- $\lambda_{t}\left(x_{+}\right) \leq \lambda_{t}(x)^{2}$

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

- $\lambda_{t}(x)=\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}<1$; hence x_{+}lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\lambda_{t}\left(x^{+}\right)^{2}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\lambda_{t}\left(x^{+}\right)^{2}=\left\|D_{+} A \Delta x_{n t}^{+}\right\|^{2}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2}
\end{aligned}
$$

To see the last equality we use Pythagoras

$$
\|a\|^{2}+\|a+b\|^{2}=\|b\|^{2}
$$

if $a^{T}(a+b)=0$.

Convergence of Newtons Method

$D A \Delta x_{\mathrm{nt}}$

Convergence of Newtons Method

$$
D A \Delta x_{\mathrm{nt}}=D A\left(x^{+}-x\right)
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
a^{T}(a+b)
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(A^{T} D_{+}^{2} A \Delta x_{\mathrm{nt}}^{+}-A^{T} D^{2} A \Delta x_{\mathrm{nt}}+A^{T} D_{+} D A \Delta x_{\mathrm{nt}}\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(A^{T} D_{+}^{2} A \Delta x_{\mathrm{nt}}^{+}-A^{T} D^{2} A \Delta x_{\mathrm{nt}}+A^{T} D_{+} D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(H_{+} \Delta x_{\mathrm{nt}}^{+}-H \Delta x_{\mathrm{nt}}+A^{T} D_{+} \overrightarrow{1}-A^{T} D \overrightarrow{1}\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(A^{T} D_{+}^{2} A \Delta x_{\mathrm{nt}}^{+}-A^{T} D^{2} A \Delta x_{\mathrm{nt}}+A^{T} D_{+} D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(H_{+} \Delta x_{\mathrm{nt}}^{+}-H \Delta x_{\mathrm{nt}}+A^{T} D_{+} \overrightarrow{1}-A^{T} D \overrightarrow{1}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(-\nabla f_{t}\left(x^{+}\right)+\nabla f_{t}(x)+\nabla \phi\left(x^{+}\right)-\nabla \phi(x)\right)
\end{aligned}
$$

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(A^{T} D_{+}^{2} A \Delta x_{\mathrm{nt}}^{+}-A^{T} D^{2} A \Delta x_{\mathrm{nt}}+A^{T} D_{+} D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(H_{+} \Delta x_{\mathrm{nt}}^{+}-H \Delta x_{\mathrm{nt}}+A^{T} D_{+} \overrightarrow{1}-A^{T} D \overrightarrow{1}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(-\nabla f_{t}\left(x^{+}\right)+\nabla f_{t}(x)+\nabla \phi\left(x^{+}\right)-\nabla \phi(x)\right) \\
& =0
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right)^{2} \overrightarrow{1}\right\|^{2}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right)^{2} \overrightarrow{1}\right\|^{2} \\
& \leq\left\|\left(I-D_{+}^{-1} D\right) \overrightarrow{1}\right\|^{4}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right)^{2} \overrightarrow{1}\right\|^{2} \\
& \leq\left\|\left(I-D_{+}^{-1} D\right) \overrightarrow{1}\right\|^{4} \\
& =\left\|D A \Delta x_{\mathrm{nt}}\right\|^{4}
\end{aligned}
$$

Convergence of Newtons Method

bound on $\lambda_{t}\left(\boldsymbol{x}^{+}\right)$:
we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right)^{2} \overrightarrow{1}\right\|^{2} \\
& \leq\left\|\left(I-D_{+}^{-1} D\right) \overrightarrow{1}\right\|^{4} \\
& =\left\|D A \Delta x_{\mathrm{nt}}\right\|^{4} \\
& =\lambda_{t}(x)^{4}
\end{aligned}
$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq\left(\sum_{i} y_{i}^{2}\right)^{2}$

If $\lambda_{t}(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing
1: start at analytic center
2: while solution not good enough do
3: make step to improve objective function
4: \quad recenter to return to central path

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^{*}\left(t_{0}\right)$ is given
- $x^{*}(t)$ is computed exactly in each iteration
ϵ is approximation we are aiming for
start at $t=t_{0}$, repeat until $m / t \leq \epsilon$
- compute $x^{*}(\mu t)$ using Newton starting from $x^{*}(t)$
- $t:=\mu t$
where $\mu=1+1 /(2 \sqrt{m})$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{x} \overrightarrow{1}$.
The Newton decrement is

$$
\lambda_{t^{+}}(x)^{2}
$$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{x} \overrightarrow{1}$.
The Newton decrement is

$$
\lambda_{t^{+}}(x)^{2}=\nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)
$$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{x} \overrightarrow{1}$.
The Newton decrement is

$$
\begin{aligned}
\lambda_{t^{+}}(x)^{2} & =\nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\
& =(\mu-1)^{2} \overrightarrow{1}^{T} B\left(B^{T} B\right)^{-1} B^{T} \overrightarrow{1} \quad B=D_{x}^{T} A
\end{aligned}
$$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{x} \overrightarrow{1}$.
The Newton decrement is

$$
\begin{aligned}
\lambda_{t^{+}}(x)^{2} & =\nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\
& =(\mu-1)^{2} \overrightarrow{1}^{T} B\left(B^{T} B\right)^{-1} B^{T} \overrightarrow{1} \quad B=D_{x}^{T} A \\
& \leq(\mu-1)^{2} m
\end{aligned}
$$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{\chi} \overrightarrow{1}$.
The Newton decrement is

$$
\begin{aligned}
\lambda_{t^{+}}(x)^{2} & =\nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\
& =(\mu-1)^{2} \overrightarrow{1}^{T} B\left(B^{T} B\right)^{-1} B^{T} \overrightarrow{1} \quad B=D_{x}^{T} A \\
& \leq(\mu-1)^{2} m \\
& =1 / 4
\end{aligned}
$$

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or 2^{\prime}

Number of outer iterations:

We need $t_{k}=\mu^{k} t_{0} \geq m / \epsilon$. This holds when

$$
k \geq \frac{\log \left(m /\left(\epsilon t_{0}\right)\right)}{\log (\mu)}
$$

We get a bound of

$$
\mathcal{O}\left(\sqrt{m} \log \frac{m}{\epsilon t_{0}}\right)
$$

Explanation for previous slide
$P=B\left(B^{T} B\right)^{-1} B^{T}$ is a symmet ' ric real-valued matrix; it has n ! ' linearly independent Eigenvec-। tors. Since it is a projection ma-1 trix $\left(P^{2}=P\right)$ it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^{2} are λ_{i}^{2}, where λ_{i} is Eigenvalue of P).
The expression

$$
\max _{v} \frac{v^{T} P v}{v^{T} v}
$$

gives the largest Eigenvalue for
P. Hence, $\overrightarrow{1}^{T} P \overrightarrow{1} \leq \overrightarrow{1}^{T} \overrightarrow{1}=m$

We show how to get a starting point with $t_{0}=1 / 2^{L}$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L \sqrt{m})$ iterations.

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define
$\overline{a_{i}^{T} v}$ is the change on the left ' hand side of the i-th constraint |' $\sigma_{x}(v):=\max _{S_{i}(x)}^{a_{i}^{T} v} \begin{aligned} & \text { when moving in direction of } v . \\ & \text { If } \sigma_{x}(v)>1 \text { then for one coor- }\end{aligned}$ ' dinate this change is larger than ! the slack in the constraint at posi-1 ition x.

By downscaling v we can en-
Observation:

$$
x+\alpha v \in P \quad \text { for } \alpha \in\left\{0,1 / \sigma_{x}(v)\right\}
$$

Damped Newton Method

Suppose that we move from x to $x+\alpha v$. The linear estimate says that $f_{t}(x)$ should change by $\nabla f_{t}(x)^{T} \alpha v$.

The following argument shows that f_{t} is well behaved. For small α the reduction of $f_{t}(x)$ is close to linear estimate.

Damped Newton Method

Suppose that we move from x to $x+\alpha v$. The linear estimate says that $f_{t}(x)$ should change by $\nabla f_{t}(x)^{T} \alpha v$.

The following argument shows that f_{t} is well behaved. For small α the reduction of $f_{t}(x)$ is close to linear estimate.

$$
f_{t}(x+\alpha v)-f_{t}(x)=t c^{T} \alpha v+\phi(x+\alpha v)-\phi(x)
$$

Damped Newton Method

Suppose that we move from x to $x+\alpha v$. The linear estimate says that $f_{t}(x)$ should change by $\nabla f_{t}(x)^{T} \alpha v$.

The following argument shows that f_{t} is well behaved. For small α the reduction of $f_{t}(x)$ is close to linear estimate.

$$
\begin{gathered}
f_{t}(x+\alpha v)-f_{t}(x)=t c^{T} \alpha v+\phi(x+\alpha v)-\phi(x) \\
\phi(x+\alpha v)-\phi(x)=-\sum_{i} \log \left(s_{i}(x+\alpha v)\right)+\sum_{i} \log \left(s_{i}(x)\right)
\end{gathered}
$$

Damped Newton Method

Suppose that we move from x to $x+\alpha v$. The linear estimate says that $f_{t}(x)$ should change by $\nabla f_{t}(x)^{T} \alpha v$.

The following argument shows that f_{t} is well behaved. For small α the reduction of $f_{t}(x)$ is close to linear estimate.

$$
\begin{aligned}
& f_{t}(x+\alpha v)-f_{t}(x)=t c^{T} \alpha v+\phi(x+\alpha v)-\phi(x) \\
& \phi(x+\alpha v)-\phi(x)=-\sum_{i} \log \left(s_{i}(x+\alpha v)\right)+\sum_{i} \log \left(s_{i}(x)\right) \\
&=-\sum_{i} \log \left(s_{i}(x+\alpha v) / s_{i}(x)\right)
\end{aligned}
$$

Damped Newton Method

Suppose that we move from x to $x+\alpha v$. The linear estimate says that $f_{t}(x)$ should change by $\nabla f_{t}(x)^{T} \alpha v$.

The following argument shows that f_{t} is well behaved. For small α the reduction of $f_{t}(x)$ is close to linear estimate.

$$
\begin{aligned}
& f_{t}(x+\alpha v)-f_{t}(x)=t c^{T} \alpha v+\phi(x+\alpha v)-\phi(x) \\
& \phi(x+\alpha v)-\phi(x)=-\sum_{i} \log \left(s_{i}(x+\alpha v)\right)+\sum_{i} \log \left(s_{i}(x)\right) \\
&=-\sum_{i} \log \left(s_{i}(x+\alpha v) / s_{i}(x)\right) \\
&=-\sum_{i} \log \left(1-a_{i}^{T} \alpha v / s_{i}(x)\right)
\end{aligned}
$$

Damped Newton Method

Define $w_{i}=a_{i}^{T} v / s_{i}(x)$ and $\sigma=\max _{i} w_{i}$.

Damped Newton Method

Define $w_{i}=a_{i}^{T} v / s_{i}(x)$ and $\sigma=\max _{i} w_{i}$. Then
Note that $\|w\|=\|v\|_{H_{x}}$.

$$
\begin{aligned}
f_{t}(x+\alpha v) & -f_{t}(x)-\nabla f_{t}(x)^{T} \alpha v \\
& =-\sum_{i}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right)
\end{aligned}
$$

[^3]
Damped Newton Method

Define $w_{i}=a_{i}^{T} v / s_{i}(x)$ and $\sigma=\max _{i} w_{i}$. Then
i'Note that $\|w\|=\|v\|_{H_{x}}$.

$$
\begin{aligned}
f_{t}(x+\alpha v) & -f_{t}(x)-\nabla f_{t}(x)^{T} \alpha v \\
& =-\sum_{i}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right) \\
& \leq-\sum_{w_{i}>0}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right)+\sum_{w_{i} \leq 0} \frac{\alpha^{2} w_{i}^{2}}{2}
\end{aligned}
$$

[^4]
Damped Newton Method

Define $w_{i}=a_{i}^{T} v / s_{i}(x)$ and $\sigma=\max _{i} w_{i}$. Then
i'Note that $\|w\|=\|v\|_{H_{x}}$.

$$
\begin{aligned}
f_{t}(x+\alpha v) & -f_{t}(x)-\nabla f_{t}(x)^{T} \alpha v \\
& =-\sum_{i}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right) \\
& \leq-\sum_{w_{i}>0}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right)+\sum_{w_{i} \leq 0} \frac{\alpha^{2} w_{i}^{2}}{2} \\
& \leq-\sum_{w_{i}>0} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma))+\frac{(\alpha \sigma)^{2}}{2} \sum_{w_{i} \leq 0} \frac{w_{i}^{2}}{\sigma^{2}}
\end{aligned}
$$

'For $|x|<1, \bar{x} \leq 0$:

$$
x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots \geq-\frac{x^{2}}{2}=-\frac{y^{2}}{2} \frac{x^{2}}{y^{2}}
$$

$$
\text { For }|x|<1,0<x \leq y
$$

$$
x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots=\frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{2} x}{3}-\frac{y^{2} x^{2}}{4}-\ldots\right)
$$

$$
\geq \frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{3}}{3}-\frac{y^{4}}{4}-\ldots\right)=\frac{x^{2}}{y^{2}}(y+\log (1-y))
$$

Damped Newton Method

For $x \geq 0$
$\frac{x^{2}}{2} \leq \frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots=-(x+\log (1-x))$

$$
\leq-\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma))
$$

Damped Newton Method

$$
\begin{aligned}
& \leq-\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma)) \\
& =-\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
\end{aligned}
$$

Damped Newton Method

For $x \geq 0$

$$
\begin{aligned}
& \leq-\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma)) \\
& =-\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
\end{aligned}
$$

Damped Newton Iteration:

In a damped Newton step we choose

$$
x_{+}=x+\frac{1}{1+\sigma_{x}\left(\Delta x_{\mathrm{nt}}\right)} \Delta x_{\mathrm{nt}}
$$

This means that in the above expressions we choose $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\mathrm{nt}}$. Note that ! it wouldn't make sense to choose α larger than 1 as this would mean that our real target '
$1\left(x+\Delta x_{\mathrm{nt}}\right)$ is inside the polytope but we overshoot and go further than this target.

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

$$
\lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right)
$$

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

$$
\lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right)
$$

Proof: The decrease in cost is

$$
-\alpha \nabla f_{t}(x)^{T} v+\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
$$

Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

$$
\lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right)
$$

Proof: The decrease in cost is

$$
-\alpha \nabla f_{t}(x)^{T} v+\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
$$

Choosing $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\mathrm{nt}}$ gives

$$
\frac{1}{1+\sigma} \lambda_{t}(x)^{2}+\frac{\lambda_{t}(x)^{2}}{\sigma^{2}}\left(\frac{\sigma}{1+\sigma}+\log \left(1-\frac{\sigma}{1+\sigma}\right)\right)
$$

Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

$$
\lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right)
$$

Proof: The decrease in cost is

$$
-\alpha \nabla f_{t}(x)^{T} v+\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
$$

Choosing $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\mathrm{nt}}$ gives

$$
\begin{gathered}
\frac{1}{1+\sigma} \lambda_{t}(x)^{2}+\frac{\lambda_{t}(x)^{2}}{\sigma^{2}}\left(\frac{\sigma}{1+\sigma}+\log \left(1-\frac{\sigma}{1+\sigma}\right)\right) \\
=\frac{\lambda_{t}(x)^{2}}{\sigma^{2}}(\sigma-\log (1+\sigma))
\end{gathered}
$$

Damped Newton Method

$$
\begin{aligned}
& \geq \lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right) \\
& \geq 0.09
\end{aligned}
$$

for $\lambda_{t}(x) \geq 0.5$

Damped Newton Method

$$
\begin{aligned}
& \geq \lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right) \\
& \geq 0.09
\end{aligned}
$$

for $\lambda_{t}(x) \geq 0.5$
Centering Algorithm:
Input: precision δ; starting point x

1. compute Δx_{nt} and $\lambda_{t}(x)$
2. if $\lambda_{t}(x) \leq \delta$ return x
3. set $x:=x+\alpha \Delta x_{\mathrm{nt}}$ with

$$
\alpha=\left\{\begin{array}{cl}
\frac{1}{1+\sigma_{x}\left(\Delta x_{\mathrm{nt}}\right)} & \lambda_{t} \geq 1 / 2 \\
1 & \text { otw. }
\end{array}\right.
$$

Centering

Lemma 56

The centering algorithm starting at x_{0} reaches a point with $\lambda_{t}(x) \leq \delta$ after

$$
\frac{f_{t}\left(x_{0}\right)-\min _{y} f_{t}(y)}{0.09}+\mathcal{O}(\log \log (1 / \delta))
$$

iterations.

This can be very, very slow...

How to get close to analytic center?

Let $P=\{A x \leq b\}$ be our (feasible) polyhedron, and x_{0} a feasible point.

How to get close to analytic center?

Let $P=\{A x \leq b\}$ be our (feasible) polyhedron, and x_{0} a feasible point.

We change $b \rightarrow b+\frac{1}{\lambda} \cdot \overrightarrow{1}$, where $L=\langle A\rangle+\langle b\rangle+\langle c\rangle$ (encoding length) and $\lambda=2^{2 L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Lemma [without proof]
The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i j}=\operatorname{det}(M)$.

Lemma [without proof]
The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i j}=\operatorname{det}(M)$.

For two basis solutions $x_{B}, x_{\bar{B}}$, the cost-difference $c^{T} x_{B}-c^{T} x_{\bar{B}}$ can be represented by a rational number that has denominator $z=\operatorname{det}\left(A_{B}\right) \cdot \operatorname{det}\left(A_{\bar{B}}\right)$.

Lemma [without proof]
The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i j}=\operatorname{det}(M)$.

For two basis solutions $x_{B}, x_{\bar{B}}$, the cost-difference $c^{T} x_{B}-c^{T} x_{\bar{B}}$ can be represented by a rational number that has denominator $z=\operatorname{det}\left(A_{B}\right) \cdot \operatorname{det}\left(A_{\bar{B}}\right)$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1 / 2^{4 L}$ (i.e., $t \approx 2^{4 L}$). This means the previous analysis essentially also works for the perturbed LP.

Lemma [without proof]
The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i j}=\operatorname{det}(M)$.

For two basis solutions $x_{B}, x_{\bar{B}}$, the cost-difference $c^{T} x_{B}-c^{T} x_{\bar{B}}$ can be represented by a rational number that has denominator $z=\operatorname{det}\left(A_{B}\right) \cdot \operatorname{det}\left(A_{\bar{B}}\right)$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1 / 2^{4 L}$ (i.e., $t \approx 2^{4 L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily $B F S$) the objective value $\bar{c}^{T} x$ is at most $n 2^{M} 2^{L}$, where $M \leq L$ is the encoding length of the largest entry in \bar{c}.

How to get close to analytic center?

Start at x_{0}.

${ }_{1}^{1}$ Note that an entry in \hat{c} fulfills $\left|\hat{c}_{i}\right| \leq 2^{2 L}$.
' This holds since the slack in every constraint ,
it x_{0} is at least $\lambda=1 / 2^{2 L}$, and the gradient
is the vector of inverse slacks.

How to get close to analytic center?

Start at x_{0}.

Choose $\hat{c}:=-\nabla \phi(x)$.
${ }_{1}^{1}$ Note that an entry in \hat{c} fulfills $\left|\hat{c}_{i}\right| \leq 2^{2 L}$
' This holds since the slack in every constraint it x_{0} is at least $\lambda=1 / 2^{2 L}$, and the gradient is the vector of inverse slacks.

How to get close to analytic center?

Start at x_{0}. at x_{0} is at least $\lambda=1 / 2^{2 L}$, and the gradient is the vector of inverse slacks.
$x_{0}=x^{*}(1)$ is point on central path for \hat{c} and $t=1$.

How to get close to analytic center?

Start at x_{0}.
$x_{0}=x^{*}(1)$ is point on central path for \hat{c} and $t=1$.
You can travel the central path in both directions. Go towards 0 until $t \approx 1 / 2^{\Omega(L)}$. This requires $O(\sqrt{m} L)$ outer iterations.

How to get close to analytic center?

Start at x_{0}.
$x_{0}=x^{*}(1)$ is point on central path for \hat{c} and $t=1$.
You can travel the central path in both directions. Go towards 0 until $t \approx 1 / 2^{\Omega(L)}$. This requires $O(\sqrt{m} L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

How to get close to analytic center?

Start at x_{0}.
Choose $\hat{c}:=-\nabla \phi(x)$.
$x_{0}=x^{*}(1)$ is point on central path for \hat{c} and $t=1$.
You can travel the central path in both directions. Go towards 0 until $t \approx 1 / 2^{\Omega(L)}$. This requires $O(\sqrt{m} L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.
Let $x_{\mathcal{C}}$ denote the point that minimizes

$$
t \cdot c^{T} x+\phi(x)
$$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right)-t c^{T} x_{c}-\phi\left(x_{c}\right)
$$

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right)
\end{aligned}
$$

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right) \\
& \leq 4 t n 2^{3 L}
\end{aligned}
$$

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right) \\
& \leq 4 t n 2^{3 L}
\end{aligned}
$$

For $t=1 / 2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right) \\
& \leq 4 t n 2^{3 L}
\end{aligned}
$$

For $t=1 / 2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m} L)$ outer iterations for the whole algorithm.

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The difference between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right) \\
& \leq 4 t n 2^{3 L}
\end{aligned}
$$

For $t=1 / 2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m} L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}\left(m^{3}\right)$ time.

Part III

Approximation Algorithms

There are many practically important optimization problems that are NP-hard.

There are many practically important optimization problems that are NP-hard.

What can we do?

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α-approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Why approximation algorithms?

Why approximation algorithms?

- We need algorithms for hard problems.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 58

An optimization problem $P=(\mathcal{I}, \mathrm{sol}, m$, goal $)$ is in NPO if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in \operatorname{sol}(\mathcal{I})$ can be verified in polynomial time
- m can be computed in polynomial time
- goal $\in\{\min , \max \}$

In other words: the decision problem is there a solution y with $m(x, y)$ at most/at least z is in NP.

- x is problem instance
- y is candidate solution
- $m^{*}(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$
R(x, y):=\max \left\{\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right\}
$$

Definition 60 (r-approximation)

An algorithm A is an r-approximation algorithm iff

$$
\forall x \in \mathcal{I}: R(x, A(x)) \leq r,
$$

and A runs in polynomial time.

Definition 61 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon
$$

The running time is polynomial in $|x|$.
approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 62 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon
$$

The running time is polynomial in $|x|$ and $1 / \epsilon$.
approximation with arbitrary good factor... fast!

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 63 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.
constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph $G=(V, E)$; partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.
MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}\left(\log ^{c}(|x|)\right)$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

There are really difficult problems!

Theorem 64
For any constant $\epsilon>0$ there does not exist an
$\Omega\left(n^{1-\epsilon}\right)$-approximation algorithm for the maximum clique problem on a given graph G with n nodes unless $\mathrm{P}=\mathrm{NP}$.

There are really difficult problems!

Theorem 64
For any constant $\epsilon>0$ there does not exist an
$\Omega\left(n^{1-\epsilon}\right)$-approximation algorithm for the maximum clique problem on a given graph G with n nodes unless $\mathrm{P}=\mathrm{NP}$.

Note that an n-approximation is trivial.

There are weird problems!
Asymmetric k-Center admits an $\mathcal{O}\left(\log ^{*} n\right)$-approximation.
There is no $o\left(\log ^{*} n\right)$-approximation to Asymmetric k-Center unless $N P \subseteq D T I M E\left(n^{\log \log \log n}\right)$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 65
An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 65
An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_{1}, \ldots, S_{k} \subseteq U$, where the i-th subset S_{i} has weight/cost w_{i}. Find a collection $I \subseteq\{1, \ldots, k\}$ such that

$$
\forall u \in U \exists i \in I: u \in S_{i} \text { (every element is covered) }
$$

and

$$
\sum_{i \in I} w_{i} \text { is minimized. }
$$

Set Cover

Set Cover

Harald Räcke

Set Cover

Harald Räcke

Set Cover

Set Cover

Harald Räcke

Set Cover

Harald Räcke

Set Cover

Harald Räcke

IP-Formulation of Set Cover

\min		$\sum_{i} w_{i} x_{i}$		
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i}$	\geq	1
	$\forall i \in\{1, \ldots, k\}$	x_{i}	\geq	0
	$\forall i \in\{1, \ldots, k\}$	x_{i}	integral	

Vertex Cover

Given a graph $G=(V, E)$ and a weight w_{v} for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

| min | | $\sum_{v \in V} w_{v} x_{v}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall e=(i, j) \in E$ | $x_{i}+x_{j}$ | ≥ 1 |
| | $\forall v \in V$ | x_{v} | $\in\{0,1\}$ |

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

\max	$\sum_{e \in E} w_{e} x_{e}$		
s.t.	$\forall v \in V$	$\sum_{e: v \in e} x_{e} \leq 1$	
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

\[

\]

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i}$	$\leq K$
	x_{i}	$\in\{0,1\}$	

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Relations

Maximization Problems:

Minimization Problems:

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$
\begin{array}{|crrll|}
\hline \min & & \sum_{i=1}^{k} w_{i} x_{i} & \\
\text { s.t. } & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \in[0,1]
\end{array}
$$

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$
\begin{array}{|crrl}
\hline \min & & \sum_{i=1}^{k} w_{i} x_{i} & \\
\mathrm{s.t.} & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \in[0,1] \\
\hline
\end{array}
$$

Let f_{u} be the number of sets that the element u is contained in (the frequency of u). Let $f=\max _{u}\left\{f_{u}\right\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_{i}-values with $x_{i} \geq \frac{1}{f}$ to 1 . Set all other x_{i}-values to 0 .

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\sum_{i \in I} w_{i}
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\sum_{i \in I} w_{i} \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right)
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x)
\end{aligned}
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x) \\
& \leq f \cdot \text { OPT }
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$
\begin{array}{cl}
\min & \sum_{i \in I} w_{i} x_{i} \\
\text { s.t. } \forall u & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& x_{i} \geq 0
\end{array}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

\min	$\sum_{i \in I} w_{i} x_{i}$
s.t. $\forall u$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$
	$x_{i} \geq 0$

Dual:

\max	$\sum_{u \in U} y_{u}$	
s.t. $\forall i$	$\sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$
y_{u}	≥ 0	

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$
\sum_{u: u \in S_{i}} y_{u}=w_{i}
$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.
- But then y_{u} could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Proof:

$$
\sum_{i \in I} w_{i}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\sum_{i \in I} w_{i}=\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right)
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.
Of course, we also need that I is a cover.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    1: \(y \leftarrow 0\)
    2: \(I \leftarrow \varnothing\)
    3: while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
    4: \(\quad\) increase dual variable \(y_{u}\) until constraint for some
    new set \(S_{\ell}\) becomes tight
5: \(\quad I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

```
Algorithm 1 Greedy
    1: \(I \leftarrow \varnothing\)
    2: \(\hat{S}_{j} \leftarrow S_{j} \quad\) for all \(j\)
    3: while \(I\) not a set cover do
    4: \(\quad \ell \leftarrow \arg \min _{j: \hat{S}_{j} \neq 0} \frac{w_{j}}{\left|\hat{S}_{j}\right|}\)
    5: \(\quad I \leftarrow I \cup\{\ell\}\)
    6: \(\quad \hat{S}_{j} \leftarrow \hat{S}_{j}-S_{\ell} \quad\) for all \(j\)
```

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, and $S \subseteq\{1, \ldots, k\}$ then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i \in S} a_{i}}{\sum_{i \in S} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence, $w_{j}| | \hat{S}_{j} \left\lvert\, \leq \frac{\mathrm{OPT}}{n_{\ell}}\right.$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\sum_{j \in I} w_{j}
$$

Technique 4: The Greedy Algorithm

$$
\sum_{j \in I} w_{j} \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \text { OPT } \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right)
\end{aligned}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{n} \frac{1}{i}
\end{aligned}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{n} \frac{1}{i} \\
& =H_{n} \cdot \mathrm{OPT} \leq \mathrm{OPT}(\ln n+1)
\end{aligned}
$$

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$$
\operatorname{Pr}[u \text { not covered in one round }]
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{gathered}
\operatorname{Pr}[u \text { not covered in one round }] \\
=\prod_{j: u \in S_{j}}\left(1-x_{j}\right)
\end{gathered}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& \qquad=\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& \quad=\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1} .
\end{aligned}
$$

Probability that $\boldsymbol{u} \in \boldsymbol{U}$ is not covered (after $\boldsymbol{\ell}$ rounds):

$$
\operatorname{Pr}[u \text { not covered after } \ell \text { round }] \leq \frac{1}{e^{\ell}} .
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right]
\end{aligned}
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

Lemma 71

With high probability $\mathcal{O}(\log n)$ rounds suffice.

$$
\begin{aligned}
& \operatorname{Pr}[\exists u \in U \text { not covered after } \ell \text { round }] \\
& \quad=\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \quad \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

Lemma 71
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Proof: We have

$$
\operatorname{Pr}[\# \text { rounds } \geq(\alpha+1) \ln n] \leq n e^{-(\alpha+1) \ln n}=n^{-\alpha} .
$$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.
$E[$ cost $]$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$
E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot \mathrm{OPT}) n^{-\alpha}
$$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$
E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot \mathrm{OPT}) n^{-\alpha}=\mathcal{O}(\ln n) \cdot \mathrm{OPT}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.
$E[$ cost $]=$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
E[\text { cost }]= & \operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
E[\text { cost | success] }
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost } \mid \text { success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }])
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost } \mid \text { success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP})
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost | success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost | success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

for $n \geq 2$ and $\alpha \geq 1$.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $\left.2^{\text {poly }(\log n)}\right)$.

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n=2^{k}-1$
- Elements are all vectors \vec{x} over $G F[2]$ of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$
S_{\vec{y}}:=\left\{\vec{x} \mid \vec{x}^{T} \vec{y}=1\right\}
$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_{i}=\frac{1}{2^{k-1}}=\frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of $p<k$ sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

\min		L	
s.t.	\forall machines i	$\sum_{j} p_{j} \cdot x_{j, i}$	$\leq L$
	\forall jobs j	$\sum_{i} x_{j, i} \geq 1$	
	$\forall i, j$	$x_{j, i}$	$\in\{0,1\}$

Here the variable $x_{j, i}$ is the decision variable that describes whether job j is assigned to machine i.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Let $C_{\text {max }}^{*}$ denote the makespan of an optimal solution.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Let $C_{\text {max }}^{*}$ denote the makespan of an optimal solution.
Clearly

$$
C_{\max }^{*} \geq \max _{j} p_{j}
$$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{j} p_{j}
$$

Local Search

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Analysis

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.
Note that every machine is busy before time S_{ℓ}, because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j} \leq\left(2-\frac{1}{m}\right) C_{\max }^{*}
$$

A Tight Example

$$
\begin{aligned}
& p_{\ell} \approx S_{\ell}+\frac{S_{\ell}}{m-1} \\
& \frac{\mathrm{ALG}}{\mathrm{OPT}}=\frac{S_{\ell}+p_{\ell}}{p_{\ell}} \approx \frac{2+\frac{1}{m-1}}{1+\frac{1}{m-1}}=2-\frac{1}{m}
\end{aligned}
$$

A Greedy Strategy

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2 -approximations.

A Greedy Strategy

Lemma 73
If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*}
$$

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

Tight Example

- $2 m+1$ jobs

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i} \leq W$	
	x_{i}	$\in\{0,1\}$	

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack
1: $A(1) \leftarrow\left[(0,0),\left(p_{1}, w_{1}\right)\right]$
2: for $j \leftarrow 2$ to n do
3: $\quad A(j) \leftarrow A(j-1)$
4: \quad for each $(p, w) \in A(j-1)$ do
5: \quad if $w+w_{j} \leq W$ then
6:
add ($p+p_{j}, w+w_{j}$) to $A(j)$
7: remove dominated pairs from $A(j)$
8: return $\max _{(p, w) \in A(n)} p$
The running time is $\mathcal{O}(n \cdot \min \{W, P\})$, where $P=\sum_{i} p_{i}$ is the total profit of all items. This is only pseudo-polynomial.

15 Rounding Data + Dynamic Programming

Definition 74
An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most
$\mathcal{O}\left(n P^{\prime}\right)$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)
$$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right)
$$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) .
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\sum_{i \in S} p_{i}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\sum_{i \in S} p_{i} \geq \mu \sum_{i \in S} p_{i}^{\prime}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime}
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M \\
& \geq(1-\epsilon) \mathrm{OPT}
\end{aligned}
$$

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where l is the last job to complete.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where l is the last job to complete.
Together with the obervation that if each $p_{i} \geq \frac{1}{3} C_{\text {max }}^{*}$ then LPT is optimal this gave a $4 / 3$-approximation.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.
2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$
p_{\ell} \leq \sum_{j} p_{j} /(m k)
$$

which is at most $C_{\text {max }}^{*} / k$.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km}, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km}, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k=\left\lceil\frac{1}{\epsilon}\right\rceil$.

How to get rid of the requirement that m is constant?

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$).

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$.

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T / k.
- Otw. it is a short job.
- We round all long jobs down to multiples of T / k^{2}.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

Since, jobs had been rounded to multiples of T / k^{2} going from rounded sizes to original sizes gives that the Makespan is at most

$$
\left(1+\frac{1}{k}\right) T .
$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$
T+\frac{T}{k} \leq\left(1+\frac{1}{k}\right) T
$$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have

$$
\begin{aligned}
& \operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \\
& \quad= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\
1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \neq 0 \\
\infty & \text { otw. }\end{cases}
\end{aligned}
$$

where C is the set of all configurations.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have

$$
\begin{aligned}
& \operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \\
& \quad= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\
1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \neq 0 \\
\infty & \text { otw. }\end{cases}
\end{aligned}
$$

where C is the set of all configurations.
Hence, the running time is roughly $(k+1)^{k^{2}} n^{k^{2}} \approx(n k)^{k^{2}}$.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76
There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless $\mathrm{P}=\mathrm{NP}$

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.

More General

Let OPT $\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.

$$
\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)
$$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{A}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{A}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{A}-s_{A}\right) & \left(n_{1}, \ldots, n_{A}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
$|C| \leq(B+1)^{A}$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O\left((B+1)^{A} n^{A}\right)$ because the dynamic programming table has just n^{A} entries.

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 77
There is no ρ-approximation for Bin Packing with $\rho<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Bin Packing

Definition 78
An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Choose $\gamma=\epsilon / 2$. Then we either use ℓ bins or at most

$$
\frac{1}{1-\epsilon / 2} \cdot \mathrm{OPT}+1 \leq(1+\epsilon) \cdot \mathrm{OPT}+1
$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Linear Grouping:
Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping

Linear Grouping

Linear Grouping

Linear Grouping

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Lemma 80
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Lemma 81
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I^{\prime} the items for group 2 have been packed;

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I^{\prime} the items for group 2 have been packed;

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.

Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

- cost (for large items) at most

$$
\operatorname{OPT}\left(I^{\prime}\right)+k \leq \operatorname{OPT}(I)+\epsilon \operatorname{SIZE}(I) \leq(1+\epsilon) \operatorname{OPT}(I)
$$

- running time $\mathcal{O}\left(\left(\frac{2}{\epsilon} n\right)^{4 / \epsilon^{2}}\right)$.

Can we do better?

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right) .
$$

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right) .
$$

Note that this is usually better than a guarantee of

$$
(1+\epsilon) \mathrm{OPT}(I)+1 .
$$

Configuration LP

Change of Notation:

- Group pieces of identical size.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};
- s_{m} smallest size and b_{m} number of pieces of size s_{m}.

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}.

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}. Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}. Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Configuration LP

Let N be the number of configurations (exponential).

Configuration LP

Let N be the number of configurations (exponential).
Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

Configuration LP

Let N be the number of configurations (exponential).
Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

min		$\sum_{j=1}^{N} x_{j}$		
s.t.	$\forall i \in\{1 \ldots m\}$	$\sum_{j=1}^{N} T_{j i} x_{j}$	\geq	b_{i}
	$\forall j \in\{1, \ldots, N\}$	x_{j}	\geq	0
	$\forall j \in\{1, \ldots, N\}$	x_{j}	integral	

How to solve this LP?

later...

We can assume that each item has size at least $1 / \operatorname{SIZE}(I)$.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_{2}, \ldots, G_{r-1}.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_{2}, \ldots, G_{r-1}.
- Only the size of items in the last group G_{Y} may sum up to less than 2.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.
- Observe that $n_{i} \geq n_{i-1}$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$.
- All items in a group have the same size in I^{\prime}.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{Y} is at most 6 as a group has total size at most 3 .

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{Y} is at most 6 as a group has total size at most 3.
- Consider a group G_{i} that has strictly more items than G_{i-1}.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3 .
- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the average piece size is only $3 / n_{i}$.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3 .
- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the average piece size is only $3 / n_{i}$.

- Summing over all i that have $n_{i}>n_{i-1}$ gives a bound of at most

$$
\sum_{j=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log (\operatorname{SIZE}(I)))
$$

(note that $n_{r} \leq \operatorname{SIZE}(I)$ since we assume that the size of each item is at least $1 / \operatorname{SIZE}(I))$.

Algorithm 1 BinPack
1: if $\operatorname{SIZE}(I)<10$ then
2: pack remaining items greedily
3: Apply harmonic grouping to create instance I^{\prime}; pack discarded items in at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$ bins.
4: Let x be optimal solution to configuration LP
5: Pack $\left\lfloor x_{j}\right\rfloor$ bins in configuration T_{j} for all j; call the packed instance I_{1}.
6: Let I_{2} be remaining pieces from I^{\prime}
7: Pack I_{2} via $\operatorname{BinPack}\left(I_{2}\right)$

Analysis

$$
\mathrm{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\operatorname{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\operatorname{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).
- $x_{j}-\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{2}.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$
\mathcal{O}(\log (\operatorname{SIZE}(I))) \cdot L
$$

many bins where L is the number of recursion levels.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.
- The total size of items in I_{2} can be at most $\sum_{j=1}^{N} x_{j}-\left\lfloor x_{j}\right\rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.
Primal

$$
\begin{array}{|crrl|}
\hline \text { min } & & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} \geq & b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} \geq 0 \\
\hline
\end{array}
$$

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.
Primal

$$
\begin{array}{|crrl|}
\hline \text { min } & & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} & \geq b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} \geq 0 \\
\hline
\end{array}
$$

Dual

\max		$\sum_{i=1}^{m} y_{i} b_{i}$
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i} \leq 1$
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$

Separation Oracle

Suppose that I am given variable assignment y for the dual.
How do I find a violated constraint?

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

But this is the Knapsack problem.

Separation Oracle

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:
Dual ${ }^{\prime}$

\max		$\sum_{i=1}^{m} y_{i} b_{i}$
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i} \leq 1+\epsilon^{\prime}$
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual ${ }^{\prime}$

Primal'

$$
\begin{array}{|crrl|}
\hline \text { min } & & \left(1+\epsilon^{\prime}\right) \sum_{j=1}^{N} x_{j} & \\
\mathrm{s.t.} & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} & \geq b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} & \geq 0 \\
\hline
\end{array}
$$

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

$$
\left(1+\epsilon^{\prime}\right) \mathrm{OPT}_{\mathrm{LP}}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right)
$$

bins.

This gives that overall we need at most

$$
\left(1+\epsilon^{\prime}\right) \mathrm{OPT}_{\mathrm{LP}}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right)
$$

bins.
We can choose $\epsilon^{\prime}=\frac{1}{\text { OPT }}$ as OPT $\leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

16.1 MAXSAT

Problem definition:

- n Boolean variables

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

$E[W]$

$$
E[W]=\sum_{j} w_{j} E\left[X_{j}\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j}
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j} \\
& \geq \frac{1}{2} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

| \max | | $\sum_{j} w_{j} z_{j}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall j$ | $\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)$ | $\geq z_{j}$ |
| | $\forall i$ | y_{i} | $\in\{0,1\}$ |
| | $\forall j$ | z_{j} | ≤ 1 |

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Lemma 84 (Geometric Mean \leq Arithmetic Mean)
For any nonnegative a_{1}, \ldots, a_{k}

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
f(\lambda)=f((1-\lambda) 0+\lambda 1)
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1)
\end{aligned}
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}} \\
& \leq\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

$E[W]$

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \text { OPT }
\end{aligned}
$$

MAXSAT: The better of two

Theorem 87
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
E\left[\max \left\{W_{1}, W_{2}\right\}\right]
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \quad \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to $1 /$ true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

Theorem 88
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\
& \leq 4^{-z_{j}}
\end{aligned}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence, $\operatorname{Pr}\left[C_{j}\right.$ satisfied $]$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} \mathrm{OPT}
$$

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Can we do better?
Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set

$$
z_{1}=z_{2}=z_{3}=z_{4}=1
$$

- hence, the LP has value 4 .

MaxCut

MaxCut

Given a weighted graph $G=(V, E, w), w(v) \geq 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Semidefinite Programming

$$
\begin{array}{rrr}
\hline \max / \mathrm{min} & & \sum_{i, j} c_{i j} x_{i j} \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k} x_{i j}=b_{k} \\
& x_{i j}=x_{j i} \\
& X=\left(x_{i j}\right) \text { is psd. } \\
& & \\
&
\end{array}
$$

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

[^5]
Vector Programming

$$
\begin{array}{rcc}
\max / \min & & \sum_{i, j} c_{i j}\left(v_{i}^{t} v_{j}\right) \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k}\left(v_{i}^{t} v_{j}\right) \\
& v_{i} \in \mathbb{R}^{n}
\end{array}=b_{k}
$$

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$
\begin{aligned}
& \max \quad \frac{1}{2} \sum_{i, j} w_{i j}\left(1-y_{i} y_{j}\right) \\
& \forall i \\
& y_{i} \in\{-1,1\}
\end{aligned}
$$

This is exactly MaxCut!

Semidefinite Relaxation

| \max | | $\frac{1}{2} \sum_{i, j} w_{i j}\left(1-v_{i}^{t} v_{j}\right)$ | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| | $\forall i$ | $v_{i}^{t} v_{i}$ | $=1$ | |
| | $\forall i$ | v_{i} | $\in \mathbb{R}^{n}$ | |

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

Rounding the SDP-Solution

- Choose a random vector r such that $r /\|r\|$ is uniformly distributed on the unit sphere.
- If $r^{t} v_{i}>0$ set $y_{i}=1$ else set $y_{i}=-1$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left[r=\left(x_{1}, \ldots, x_{n}\right)\right] \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{x_{1}^{2} / 2} \cdot e^{x_{2}^{2} / 2} \cdot \ldots \cdot e^{x_{n}^{2} / 2} \mathrm{~d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n} \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)} \mathrm{d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n}
\end{aligned}
$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_{1} and e_{2} are independent and are normally distributed with mean 0 and variance 1 iff e_{1} and e_{2} are orthogonal.

Note that this is clear if e_{1} and e_{2} are standard basis vectors.

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection ($r^{\prime} /\left\|r^{\prime}\right\|$) is uniformly distributed on the unit circle within the hyperplane.

Rounding the SDP-Solution

- if the normalized projection falls into the shaded region, v_{i} and v_{j} are rounded to different values
- this happens with probability θ / π

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$
- ratio is at most

$$
\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)} \geq 0.878
$$

Rounding the SDP-Solution

Rounding the SDP-Solution

Rounding the SDP-Solution

Theorem 91

Given the unique games conjecture, there is no α-approximation for the maximum cut problem with constant

$$
\alpha>\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)}
$$

unless $\mathrm{P}=\mathrm{NP}$.

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\min		$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i} \geq$	1
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \geq$	0

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\min		$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$	
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \geq 0$	

Dual Formulation:

$$
\begin{array}{|ccr|}
\hline \max & & \sum_{u \in U} y_{u} \\
\text { s.t. } & \forall i \in\{1, \ldots, k\} & \\
& \sum_{u: u \in S_{i}} y_{u} & \leq w_{i} \\
y_{u} & \geq 0
\end{array}
$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !).

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !).
- If this is the constraint for set S_{j} set $x_{j}=1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Analysis:

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}=\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\begin{aligned}
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e} & =\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e} \\
& \leq f \cdot \sum_{e} y_{e} \leq f \cdot \mathrm{OPT}
\end{aligned}
$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

If we would also fulfill dual slackness conditions

$$
y_{e}>0 \Rightarrow \sum_{j: e \in S_{j}} x_{j}=1
$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

\[

\]

$$
\begin{array}{|crrll|}
\hline \max & & \sum_{i} b_{i} y_{i} & \\
\text { s.t. } & \forall j & \sum_{i} a_{i j} y_{i} & \leq c_{j} \\
& \forall i & y_{i} & \geq 0 \\
\hline
\end{array}
$$

Suppose we have a primal/dual pair

\min		$\sum_{j} c_{j} x_{j}$		
s.t.	$\forall i$	$\sum_{j:} a_{i j} x_{j}$	\geq	b_{i}
	$\forall j$	x_{j}	\geq	0

\max		$\sum_{i} b_{i} y_{i}$		
s.t.	$\forall j$	$\sum_{i} a_{i j} y_{i}$	\leq	c_{j}
	$\forall i$	y_{i}	≥ 0	

and solutions that fulfill approximate slackness conditions:

$$
\begin{aligned}
& x_{j}>0 \Rightarrow \sum_{i} a_{i j} y_{i} \geq \frac{1}{\alpha} c_{j} \\
& y_{i}>0 \Rightarrow \sum_{j} a_{i j} x_{j} \leq \beta b_{i}
\end{aligned}
$$

Then

$$
\sum_{j} c_{j} x_{j}
$$

Then

Then

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j}
\end{aligned} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j}
$$

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
& \uparrow \\
& \text { primal cost }=\alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{j} c_{j} x_{j} & \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
{ } } & =\alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
& \frac{\text { primal cost }^{l}}{}= \alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \cdot \sum_{i} b_{i} y_{i} \\
& \uparrow
\end{aligned}
$$

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The $O(\log n)$-approximation for Set Cover does not help us to get a good solution.

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

| \min | | $\sum_{v} w_{v} x_{v}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall C \in \mathbb{C}$ | $\sum_{v \in C} x_{v}$ | ≥ 1 |
| | $\forall v$ | x_{v} | ≥ 0 |

Dual Formulation:

\[

\]

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).
- Increase y_{C} until dual constraint for some vertex v becomes tight.

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).
- Increase y_{C} until dual constraint for some vertex v becomes tight.
- set $x_{v}=1$.

Then

$$
\sum_{v} w_{v} x_{v}
$$

Then

$$
\sum_{v} w_{v} x_{v}=\sum_{v} \sum_{C: v \in C} y_{C} x_{v}
$$

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.
If every cycle is short we get a good approximation ratio, but this is unrealistic.

```
Algorithm 1 FeedbackVertexSet
    1: \(y \leftarrow 0\)
    2: \(x \leftarrow 0\)
    3: while exists cycle \(C\) in \(G\) do
    4: \(\quad\) increase \(y_{C}\) until there is \(v \in C\) s.t. \(\sum_{c: v \in C} y_{C}=w_{v}\)
    5: \(\quad x_{v}=1\)
    6: \(\quad\) remove \(v\) from \(G\)
    7: repeatedly remove vertices of degree 1 from \(G\)
```


Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$
y_{C}>0 \Rightarrow|S \cap C| \leq \mathcal{O}(\log n)
$$

Primal Dual for Shortest Path

Given a graph $G=(V, E)$ with two nodes $s, t \in V$ and edge-weights $c: E \rightarrow \mathbb{R}^{+}$find a shortest path between s and t w.r.t. edge-weights c.

Primal Dual for Shortest Path

Given a graph $G=(V, E)$ with two nodes $s, t \in V$ and edge-weights $c: E \rightarrow \mathbb{R}^{+}$find a shortest path between s and t w.r.t. edge-weights c.

\[

\]

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

The Dual:

$\left.$| \max | $\sum_{S} y_{S}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| s.t. | $\forall e \in E$ | $\sum_{S: e \in \delta(S)} y_{S}$ | | |$\leq c(e) \right\rvert\,$

Primal Dual for Shortest Path

The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$	$\leq c(e)$
	$\forall S \in S$	y_{S}	≥ 0

Here $\delta(S)$ denotes the set of edges with exactly one end-point in
S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.
An edge cannot be shorter than all the moats that it has to cross.

```
Algorithm 1 PrimalDualShortestPath
    1: \(y \leftarrow 0\)
    2: \(F \leftarrow \varnothing\)
    3: while there is no \(s-t\) path in \((V, F)\) do
    4: Let \(C\) be the connected component of \((V, F)\) con-
        taining \(s\)
    5: Increase \(y_{C}\) until there is an edge \(e^{\prime} \in \delta(C)\) such
        that \(\sum_{S: e^{\prime} \in \delta(S)} y_{S}=c\left(e^{\prime}\right)\).
    6: \(\quad F \leftarrow F \cup\left\{e^{\prime}\right\}\)
    7: Let \(P\) be an \(s\) - \(t\) path in \((V, F)\)
    8: return \(P\)
```


Lemma 93

At each point in time the set F forms a tree.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

$$
\sum_{e \in P} c(e)
$$

$$
\sum_{e \in P} c(e)=\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.
Hence, we find a shortest path.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \subseteq V: S \in S_{i}$ for some i	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	$\in\{0,1\}$

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \subseteq V: S \in S_{i}$ for some i	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	$\in\{0,1\}$

Here S_{i} contains all sets S such that $s_{i} \in S$ and $t_{i} \notin S$.

| \max | | |
| ---: | ---: | ---: | ---: |
| s.t. | $\forall e \in E \quad$
 $S: \exists i$ s.t. $S \in S_{i}$ y_{S}
 $\sum_{S: e \in \delta(S)} y_{S}$ $\leq c(e)$
 $y_{S} \geq 0$ | |
| | | |

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

```
Algorithm 1 FirstTry
    1: \(y \leftarrow 0\)
    2: \(F \leftarrow \varnothing\)
    3: while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
    4: \(\quad\) Let \(C\) be some connected component of \((V, F)\) such
    that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
    5: Increase \(y_{C}\) until there is an edge \(e^{\prime} \in \delta(C)\) s.t.
    \(\sum_{S \in S_{i}: e^{\prime} \in \delta(S)} y_{S}=c_{e^{\prime}}\)
    6: \(\quad F \leftarrow F \cup\left\{e^{\prime}\right\}\)
    7: return \(\bigcup_{i} P_{i}\)
```

$$
\sum_{e \in F} c(e)
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.
- $y_{\left\{v_{0}\right\}}>0$ but $\left|\delta\left(\left\{v_{0}\right\}\right) \cap F\right|=k$.

```
Algorithm 1 SecondTry
    1: \(y \leftarrow 0 ; F \leftarrow \varnothing ; \ell \leftarrow 0\)
    2: while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
    3: \(\quad \ell \leftarrow \ell+1\)
    4: Let \(\mathbb{C}\) be set of all connected components \(C\) of \((V, F)\)
        such that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
    5: \(\quad\) Increase \(y_{C}\) for all \(C \in \mathbb{C}\) uniformly until for some edge
        \(e_{\ell} \in \delta\left(C^{\prime}\right), C^{\prime} \in \mathbb{C}\) s.t. \(\sum_{s: e_{\ell} \in \delta(S)} y_{S}=c_{e_{\ell}}\)
    6: \(\quad F \leftarrow F \cup\left\{e_{\ell}\right\}\)
    7: \(F^{\prime} \leftarrow F\)
    8: for \(k \leftarrow \ell\) downto 1 do // reverse deletion
    9: \(\quad\) if \(F^{\prime}-e_{k}\) is feasible solution then
10: remove \(e_{k}\) from \(F^{\prime}\)
11: return \(F^{\prime}\)
```

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Example

$$
\mathrm{o}_{S_{3}}
$$

$$
\circ_{S_{1}} \quad \circ_{S_{2}} \quad t_{2}^{\circ}
$$

-

${ }^{\circ} t_{1}$

- ${ }^{\circ} t_{3}$

Example

Lemma 94

For any \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$
\sum_{e \in F^{\prime}} c_{e}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in \mathbb{C}}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|\mathbb{C}|$.

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in \mathbb{C}}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|\mathbb{C}|$.

- Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathscr{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathscr{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.
- Let $H=F^{\prime}-F_{i}$.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.
- Let $H=F^{\prime}-F_{i}$.
- All edges in H are necessary for the solution.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$
\sum_{v \in R} \operatorname{deg}(v) \geq \sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \stackrel{?}{\leq} 2|\mathbb{C}|=2|R|
$$

- Suppose that no node in B has degree one.
- Suppose that no node in B has degree one.
- Then
- Suppose that no node in B has degree one.
- Then

$$
\sum_{v \in R} \operatorname{deg}(v)
$$

- Suppose that no node in B has degree one.
- Then

$$
\sum_{v \in R} \operatorname{deg}(v)=\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v)
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|
\end{aligned}
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- But then it must be a red node.

18 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

S is the set of subsets that separate s from t.

18 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e} \geq$	1
	$\forall e \in E$	$x_{e} \geq$	0

S is the set of subsets that separate s from t.
The Dual:

max	$\sum_{S} y_{S}$				
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$			
	$\forall S \in S$	y_{S}	\geq	0	

18 Cuts \& Metrics

Shortest Path

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

S is the set of subsets that separate s from t.
The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S} \leq c(e)$	
	$\forall S \in S$	$y_{S} \geq 0$	

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

18 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

\mathcal{P} is the set of path that connect s and t.

18 Cuts \& Metrics

Minimum Cut

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

max	$\sum_{P} y_{P}$				
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$			
	$\forall P \in \mathcal{P}$	y_{P}			

18 Cuts \& Metrics

Minimum Cut

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

\max	$\sum_{P} y_{P}$		
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$	$\leq c(e)$
	$\forall P \in \mathcal{P}$	y_{P}	≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts \& Metrics

Minimum Cut

\[

\]

\mathcal{P} is the set of path that connect s and t.
The Dual:

\[

\]

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
- Define $d(u, v)=\min _{\text {path }} P$ btw. u and $v \sum_{e \in P} \ell_{e}$ as the Shortest Path Metric induced by ℓ_{e}.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s - t-cut.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose?

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:
choose r u.a.r. (uniformly at random) from interval $[0,1$)

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

${ }_{t}$

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

0
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0}
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\begin{aligned}
\operatorname{Pr}[e \text { is cut }] & =\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0} \\
& \leq \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

min	$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

min	$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Here \mathcal{P}_{i} contains all path P between s_{i} and t_{i}.

Re-using the analysis for the single-commodity case is

 difficult.Re-using the analysis for the single-commodity case is difficult.

$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

Re-using the analysis for the single-commodity case is difficult.

$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

- If for some R the balls $B\left(s_{i}, R\right)$ are disjoint between different sources, we get a $1 / R$ approximation.
- However, this cannot be guaranteed.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.

Algorithm 1 RegionGrowing $\left(s_{i}, p\right)$
1: $z \leftarrow 0$
2: repeat
3: \quad flip a coin $(\operatorname{Pr}[$ heads $]=p)$
4: $\quad z \leftarrow z+1$
5: until heads
6: return $B\left(s_{i}, z\right)$

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

- probability of cutting an edge is only p

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut

```
Algorithm 1 Multicut(G')
    1: while }\exists\mp@subsup{s}{i}{}-\mp@subsup{t}{i}{}\mathrm{ pair in G}\mp@subsup{G}{}{\prime}\mathrm{ do
    2:
    3: }\quad\mp@subsup{G}{}{\prime}=\mp@subsup{G}{}{\prime}\C// cuts edges leaving 
4: return B(si,z)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p=\delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

Problem:

We may not cut all source-target pairs.
A component that we remove may contain an $s_{i}-t_{i}$ pair.

Problem:

We may not cut all source-target pairs.
A component that we remove may contain an $s_{i}-t_{i}$ pair.
If we ensure that we cut before reaching radius $1 / 2$ we are in good shape.

- choose $p=6 \ln k \cdot \delta$
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.

$$
\operatorname{Pr}[\text { not successful }] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}
$$

- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.
$\operatorname{Pr}[$ not successful $] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}$
- Hence,

$$
\operatorname{Pr}[\exists i \text { that is not successful }] \leq \frac{1}{k^{2}}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

E[cutsize | succ.]

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }] \\
\mathrm{E}[\text { cutsize } \mid \text { succ. }]= & \frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize | no succ.] }}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

Note: success means all source-target pairs separated
We assume $k \geq 2$.

If we are not successful we simply perform a trivial k-approximation.

This only increases the expected cost by at most $\frac{1}{k^{2}} \cdot k \mathrm{OPT} \leq \mathrm{OPT} / k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot$ OPT in expectation.

[^0]: 'Here $\operatorname{sgn}(\pi)$ denotes the sign of the permu-1 tation, which is 1 if the permutation can be generated by an even number of transposi-1 'tions (exchanging two elements), and -1 if the number of transpositions is odd.
 The first identity is known as Leibniz formula.।

[^1]: Note that allowing A, b to contain rational numbers does not make a difference, as we can ' multiply every number by a suitable large constant so that everything becomes integral but the , ifeasible region does not change.

[^2]: Here we used the equation for $R e_{1}$ proved before, and the fact that $R R^{T}=I$, which holds for ' any rotation matrix. To see this observe that the length of a rotated vector x should not change, ' i.e.,

 $$
 x^{T} I x=(R x)^{T}(R x)=x^{T}\left(R^{T} R\right) x
 $$

 which means $x^{T}\left(I-R^{T} R\right) x=0$ for every vector x. It is easy to see that this can only be fulfilled if $I-R^{T} R=0$.

[^3]: 'For $|x|<1, \bar{x} \leq 0$:

 $$
 x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots \geq-\frac{x^{2}}{2}=-\frac{y^{2}}{2} \frac{x^{2}}{y^{2}}
 $$

 $$
 \text { For }|x|<1,0<x \leq y
 $$

 $$
 x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots=\frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{2} x}{3}-\frac{y^{2} x^{2}}{4}-\ldots\right)
 $$

 $$
 \geq \frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{3}}{3}-\frac{y^{4}}{4}-\ldots\right)=\frac{x^{2}}{y^{2}}(y+\log (1-y))
 $$

[^4]: 1For $|x|<1, \bar{x} \leq 0$:
 $x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots \geq-\frac{x^{2}}{2}=-\frac{y^{2}}{2} \frac{x^{2}}{y^{2}}$

 $$
 \text { For }|x|<1,0<x \leq y
 $$

 $$
 x+\log (1-x)=-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots=\frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{2} x}{3}-\frac{y^{2} x^{2}}{4}-\ldots\right)
 $$

 $$
 \geq \frac{x^{2}}{y^{2}}\left(-\frac{y^{2}}{2}-\frac{y^{3}}{3}-\frac{y^{4}}{4}-\ldots\right)=\frac{x^{2}}{y^{2}}(y+\log (1-y))
 $$

[^5]: ' Note that wlog. we can assume that all variables appear in this matrix. Suppose ; we have a non-negative scalar z and want to express something like

 $$
 \sum_{i j} a_{i j k} x_{i j}+z=b_{k}
 $$

 ; where $x_{i j}$ are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell \ell}$, and additionally introduce constraints $x_{\ell r}=0$ and $x_{r \ell}=0$.

