SS 2022

Efficient Algorithms and Data Structures II

Harald Räcke

Fakultät für Informatik TU München

https://www.moodle.tum.de/course/view.php?id=79534

Summer Term 2022

9. Jul. 2022 1/462

Organizational Matters

9. Jul. 2022 2/462

Organizational Matters

Modul: IN2004

Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"

- ECTS: 8 Credit points
- Lectures:

4 SWS
 Wed 10:15-11:45 (Room 00.13.009A)
 Fri 10:15-11:45 (MS HS3)

• Webpage:

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:

4 SWS
 Wed 10:15–11:45 (Room 00.13.009A)
 Fri 10:15–11:45 (MS HS3)

• Webpage:

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points

4 SWS Wed 10:15-11:45 (Room 00.13.009A) Fri 10:15-11:45 (MS HS3)

• Webpage:

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS

Wed 10:15-11:45 (Room 00.13.009A) Fri 10:15-11:45 (MS HS3)

• Webpage:

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:

4 SWS
 Wed 10:15-11:45 (Room 00.13.009A)
 Fri 10:15-11:45 (MS HS3)

Webpage:

The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (per appointment)

Tutorials

Tutor:

- Omar AbdelWanis
- omar.abdelwanis@tum.de
- per appointment
- Room: 03.11.018
- Time: Mon 14:00-16:00

In order to pass the module you need to pass an exam.

Exam:

- 2.5 hours
- ³⁰ There are no resources allowed, apart from a hand-writtenned piece of paper (A4).
- Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

Exam:

- 2.5 hours
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

Exam:

- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

- Exam:
 - 2.5 hours
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

- Exam:
 - 2.5 hours
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- The first one will be out on Monday, 2 May.

9. Jul. 2022 7/462

- Assignment Sheets:
 - An assignment sheet is usually made available on Monday on the module webpage.

The first one will be out on Monday, 2 May.

- Assignment Sheets:
 - An assignment sheet is usually made available on Monday on the module webpage.
 - The first one will be out on Monday, 2 May.

Part 1: Linear Programming

Part 2: Approximation Algorithms

1 Contents

9. Jul. 2022 8/462

2 Literatur

V. Chvatal:

Linear Programming, Freeman, 1983

R. Seidel:

Skript Optimierung, 1996

- D. Bertsimas and J.N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific, 1997

Vijay V. Vazirani: Approximation Algorithms,

Springer 2001

David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms, Cambridge University Press 2011

 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi: *Complexity and Approximation*, Springer, 1999

Linear Programming

9. Jul. 2022 11/462

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

3 Introduction to Linear Programming

9. Jul. 2022 12/462

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

3 Introduction to Linear Programming

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

3 Introduction to Linear Programming

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- only brew been 32 barrels of been 32
- 2.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 20 barrels been

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

⇒ 442 €
⇒ 730 €
⇒ 776 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
 - only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

⇒ 442€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

⇒ 442€

⇒ 736€ ⇒ 776€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- only brew ale: 34 barrels of ale ⇒ 442€
- only brew beer: 32 barrels of beer

- ⇒ 736€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- > 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

- ⇒ 736€
- ⇒ 776€
 - \Rightarrow 800 \in

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- only brew ale: 34 barrels of ale ⇒ 442€
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer

- ⇒ 736€
 - ⇒ 776€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

- ⇒ 736€
 - ⇒ 776€
 - ⇒ 800€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- > 7.5 barrels ale, 29.5 barrels beer
- ▶ 12 barrels ale, 28 barrels beer

- ⇒ 736€
 - ⇒ 776€
 - ⇒ 800€

Linear Program

- Introduce subdivision and to that define how much ale and to that define how much ale and to beer to produce.
- Choose the variables in such a way that the second second profit (profit) is maximized.
- Make sure that no consistence (due to limited supply) are violated.

3 Introduction to Linear Programming

9. Jul. 2022 14/462

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

3 Introduction to Linear Programming

9. Jul. 2022 14/462

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

3 Introduction to Linear Programming

9. Jul. 2022 14/462

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

3 Introduction to Linear Programming

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a,b	≥ 0

LP in standard form:

- output: numbers x₀
- #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1 \\ n \\ j=1}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \quad 1 \le j \le n$$

$$\max \quad c^T x$$
s.t.
$$Ax = b$$

$$x \ge 0$$

3 Introduction to Linear Programming

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$

s.t.
$$\sum_{\substack{j=1\\j=1}}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

Original LP

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15 <i>b</i>	≤ 480
	4a	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

3 Introduction to Linear Programming

Original LP

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

max	13a	+	23 <i>b</i>							
s.t.	5 <i>a</i>	+	15 <i>b</i>	+	S_C					= 480
	4 <i>a</i>	+	4b			+	S_h			= 160
	35a	+	20 <i>b</i>					+	s_m	= 1190
	а	,	b	,	S_C	,	s_h	,	s _m	≥ 0

There are different standard forms:

standard form					
max	$c^T x$				
s.t.	Ax	=	b		
	X	\geq	0		

3 Introduction to Linear Programming

There are different standard forms:

standard form				
max	$c^T x$			
s.t.	Ax	=	b	
	X	\geq	0	

min	$c^T x$		
s.t.	Ax	=	b
	x	\geq	0

3 Introduction to Linear Programming

There are different standard forms:

standard form					
max	$c^T x$				
s.t.	Ax	=	b		
	X	\geq	0		

standard					
maximization form					
max	$c^T x$				
s.t.	Ax	\leq	b		
	x	\geq	0		

min	$c^T x$		
s.t.	Ax	=	b
	x	\geq	0

3 Introduction to Linear Programming

There are different standard forms:

standard form					
max	$c^T x$				
s.t.	Ax	=	b		
	X	\geq	0		

standard					
maximization form					
max	$c^T x$				
s.t.	Ax	\leq	b		
	x	\geq	0		

min	$c^T x$		
s.t.	Ax	=	b
	X	\geq	0

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

greater or equal to equality:

min to max:

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

 $\min a = 3b + 5c \implies \max - a + 3b - 5c$

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

 $a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$ $s \ge 0$

greater or equal to equality:

min to max:

min a − 3b + 5c => **max** − a + 3b − 5c

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

 $a - 3b + 5c \ge 12 \implies \frac{a - 3b + 5c - s = 12}{s \ge 0}$

min to max:

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

ai∂—di+a--3b+-ai⊂ **xsm** <-- ai}

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

 $\min a - 3b + 5c \implies \max -a + 3b - 5c$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

 $a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$ $-a + 3b - 5c \le -12$

equality to greater or equal:

unrestricted to nonnegative:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

unrestricted to nonnegative:

 $0 = 10^{10} +$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$
$$-a + 3b - 5c \ge -12$$

unrestricted to nonnegative:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

Harald Räcke

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \ge 12}{-a + 3b - 5c \ge -12}$$

unrestricted to nonnegative:

x unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \ge 12}{-a + 3b - 5c \ge -12}$$

unrestricted to nonnegative:

x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

Is LP in NP?

ls LP in co-NP?

Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- ► Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- ► Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

n number of variables, m constraints, L number of bits to encode the input

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

n number of variables, m constraints, L number of bits to encode the input

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

4 is called the second constraints (Losungsraum) of the LP. A point second is called a Second constraint (gültige Losung).
6 if iteration the LP is called Second constraints (erfüllbar).

An LP is second (beschränkt) if it is feasible and

Let for a Linear Program in standard form

- $P = \{x \mid Ax = b, x \ge 0\}.$
 - P is called the feasible region (Lösungsraum) of the LP.
 - A point $x \in P$ is called a feasible point (gültige Lösung).
 - If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called (unerfüllbar).
 - An LP is bounded (beschränkt) if it is feasible and for all of the manufacture problems)

Let for a Linear Program in standard form

- $P = \{x \mid Ax = b, x \ge 0\}.$
 - *P* is called the feasible region (Lösungsraum) of the LP.
 - A point $x \in P$ is called a feasible point (gültige Lösung).
 - If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called (unerfüllbar).
 - An LP is bounded (beschränkt) if it is feasible and for all one (for modulization problems) for all one (for minimization problems)

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and for all one (for monimization problems) for all one (for minimization problems)

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise, it is called infeasible (unerfullbar).
- An LP is bounded (beschränkt) if it is feasible and for all of the monotonic descention of the monotonic descention.

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise, it is called infeasible (unerfullbar).
- An LP is bounded (beschränkt) if it is feasible and

• $c^T x < \infty$ for all $x \in P$ (for maximization problems) • $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise, it is called infeasible (unerfullbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems) • $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise, it is called infeasible (unerfullbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{x \in P \mid f(x) \le t\}$

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{x \in P \mid f(x) \le t\}$

Dimensions

Definition 7

The dimension dim(*A*) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \leq b\}$, for $a \neq 0$.

3 Introduction to Linear Programming

9. Jul. 2022 30/462 **Definition 9** A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \leq b\}$, for $a \neq 0$.

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

3 Introduction to Linear Programming

9. Jul. 2022 32/462

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

3 Introduction to Linear Programming

9. Jul. 2022 33/462 **Definition 15** Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

 $H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if {v} is a face of P.
- a face e is an edge of P if e is a face and $\dim(e) = 1$.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if {v} is a face of P.
- a face e is an edge of P if e is a face and $\dim(e) = 1$.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.
- ▶ a face *F* is a facet of *P* if *F* is a face and $\dim(F) = \dim(P) 1$.

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose of is optimal solution that is not extreme point
- Ithere exists direction d = 0 such that d = 0
- b = Ad = 0 because $A(x \pm d) = b$
- \gg Wlog. assume $d^2d \geq 0$ (by taking either d or $\geq d$)
- Consider x + Adj A > 0

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase \wedge to \wedge until first component of $\otimes \cdots \otimes \wedge$ hits 0.
- $\mathcal{T} = \mathcal{T} =$
- 3 Sector Sector Sector Component (Grand Sector Component (Grand Sector)) as a sector (2)

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

as devine the devine of as the devine the

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

Increase 3 to 3 until first component of 3 a 34 bits 0 a second is feasible. Since a second secon

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

3 Introduction to Linear Programming

9. Jul. 2022 38/462

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

- Second is feasible for all 3 = 0 since 4 (a = 3/d) = 3 and a = 3/d = 2 = 0
 - as de la proposición de la compasición de

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Second Is feasible forcall Accel since Accel Altheory and second accel and accel and accel ac

* as it may of its which more as of its its

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $\triangleright \ c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Second is feasible for all Accel since Accel Accel and a work for all Accel since Accel and Accel Accel and Accel

as A --- og of (or a Ad) --- or as of d >- 0

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- ► $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- ► $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Algebraic View

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22 Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume of is not extreme point.
- here exists direction dist. ac add e P
- Ad == 0 because A (scalad) == b
- \sim define $\beta' = 1/|d_1 > 0|$
- Age has linearly dependent columns as Ad = 0.0
- $\approx d_{1} = 0$ for all j with $c_{1} = 0$ as $c = d \geq 0$
- Hence, $\beta^{\prime} = \beta_{1}^{\prime}$ Applies sub-matrix of App

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- A_{B'} has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- A_{B'} has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- A_{B'} has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Theorem 22 Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume in has linearly dependent columns
- there exists d = 0 such that $d_0 d$
- extend if to 20 by adding 0-components
- \approx now, 202 = 0 and 202 = 0 whenever $\infty = 0$
- for sufficiently small \lambda we have \$\lambda \lambda \lambda \lambda we have \$\lambda \lambda \l
- hence, as is not extreme point

Theorem 22 Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_i > 0\}$.

Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

assume A_B has linearly dependent columns

• there exists $d \neq 0$ such that $A_B d = 0$

- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$

hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

• then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$

- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

• then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$

• assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$

▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B - y_B) = 0$;

- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- ▶ $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

assume wlog, that the first row الله lies in the span of the other rows المعالية المعالية المعالية المعالية ال

if now be a Strate by them

then the LP is infeasible, since for all so that fulfill constraints down in the LP is infeasible.

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

• assume that rank(A) < m

assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all a with $a_1 = b_1$ we also have
- **C2** if $b_1 \neq \sum_{i=2}^{m} \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

 $A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all s with one conversion we also have
- **C2** if $b_1 \neq \sum_{i=2}^{m} \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all so with the superfluous have
- **C2** if $b_1 \neq \sum_{i=2}^{m} \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

 $A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$, for suitable λ_i

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous

C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 \mathbf{x} = \sum_{i=2}^{m} \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^{m} \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $\blacktriangleright A_B$ is non-singular
- $\mathbf{x}_B = A_B^{-1}b \ge 0$
- $\blacktriangleright x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- A_B is non-singular
- $\blacktriangleright x_B = A_B^{-1}b \ge 0$
- $\blacktriangleright x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

A BFS fulfills the m equality constraints.

In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

Definition 25

For a general LP (max{ $c^T x | Ax \le b$ }) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Algebraic View

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

Is LP in NP? yes!

► Is LP in co-NP?

Is LP in P?

Proof:

Given a basis B we can compute the associated basis solution by calculating A⁻¹_B in polynomial time; then we can also compute the profit.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

Given a basis B we can compute the associated basis solution by calculating A⁻¹_Bb in polynomial time; then we can also compute the profit.

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

 $\begin{array}{ll} \max \ 13a + 23b \\ \text{s.t.} \ 5a + 15b + s_c &= 480 \\ 4a + 4b &+ s_h &= 160 \\ 35a + 20b &+ s_m = 1190 \\ a , b , s_c , s_h , s_m \ge 0 \end{array}$

4 Simplex Algorithm

9. Jul. 2022 54/462

 $\begin{array}{ll} \max & 13a + 23b \\ \text{s.t.} & 5a + 15b + s_c & = 480 \\ & 4a + 4b & + s_h & = 160 \\ & 35a + 20b & + s_m = 1190 \\ & a & , & b & , s_c & , s_h & , s_m \ge 0 \end{array}$

max Z	basis = { s_c, s_h, s_m }
$13a + 23b \qquad -Z = 0$	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	$s_h = 160$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

4 Simplex Algorithm

9. Jul. 2022 54/462

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a , b , s_c , s_h , s_m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

choose variable to bring into the basis

- chosen variable should have positive coefficient in objective function
- apply ended test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b,s _c ,s _h ,s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

choose variable to bring into the basis

- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b, s _c , s _h , s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b,s _c ,s _h ,s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b,s _c ,s _h ,s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z=0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b,s _c ,s _h ,s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	
13a + 23b	-Z = 0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
35a + 20b	$+ s_m = 1190$
a, b, s_c, s_h	, $s_m \geq 0$

$basis = \{s_c, s_h, s_m\}$
a = b = 0
Z = 0
$s_c = 480$
$s_h = 160$
$s_m = 1190$

max Z	basis = $\{s_c, s_h, s_m\}$
13a + 23b - Z = 0	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$ $s_h = 160$
$35a + 20b + s_m = 1190$	$s_h = 100$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

• Choose variable with coefficient > 0 as entering variable.

max Z	basis = $\{s_c, s_h, s_m\}$
13a + 23b - Z = 0	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	$s_h = 160$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.

max Z	basis = $\{s_c, s_h, s_m\}$
13a + 23b - Z = 0	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	$s_h = 160$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.

max Z	basis = $\{s_c, s_h, s_m\}$
$13a + 23b \qquad -Z = 0$	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$ $s_h = 160$
$35a + 20b + s_m = 1190$	$s_h = 100$ $s_m = 1190$
$a, b, s_c, s_h, s_m \geq 0$	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing θ = min{480/15, 160/4, 1190/20} ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.

max Z	basis = $\{s_c, s_h, s_m\}$
$13a + 23b \qquad -Z = 0$	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$ $s_h = 160$
$35a + 20b + s_m = 1190$	$s_h = 100$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{\(480/15, 160/4, 1190/20\)\)} ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z	
13a + 23b	-Z = 0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
35a + 20b	$+ s_m = 1190$
a, b, s_c, s_h	, $s_m \geq 0$

$$basis = \{s_c, s_h, s_m\} a = b = 0 Z = 0 s_c = 480 s_h = 160 s_m = 1190$$

max Z	
13 <i>a</i> + 23 b	-Z = 0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b, s_c, s_h, s_m	≥ 0

$$basis = \{s_c, s_h, s_m\} a = b = 0 Z = 0 s_c = 480 s_h = 160 s_m = 1190$$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

max Z	
13 <i>a</i> + 23 b	-Z = 0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b, s_c, s_h, s_m	≥ 0

$$basis = \{s_c, s_h, s_m\} a = b = 0 Z = 0 s_c = 480 s_h = 160 s_m = 1190$$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

 $\max Z$ $\frac{16}{3}a - \frac{23}{15}s_c - Z = -736$ $\frac{1}{3}a + b + \frac{1}{15}s_c = 32$ $\frac{8}{3}a - \frac{4}{15}s_c + s_h = 32$ $\frac{85}{3}a - \frac{4}{3}s_c + s_m = 550$ $a, b, s_c, s_h, s_m \ge 0$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

max Z		Γ
$\frac{16}{3}a - \frac{23}{15}s_{0}$	-Z = -736	
$\frac{1}{3}a + b + \frac{1}{15}s_{a}$	= 32	
$\frac{8}{3}a - \frac{4}{15}s_a$	$s_c + s_h = 32$	
$\frac{85}{3}a - \frac{4}{3}s_0$	$s_{c} + s_{m} = 550$	
a,b, s	$s_{h}, s_{h}, s_{m} \geq 0$	

$basis = \{b, s_h, s_m\}$
$a = s_c = 0$
Z = 736
<i>b</i> = 32
$s_h = 32$
$s_m = 550$

100 DV 7			
max Z			basis = { b, s_h, s_m }
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	
$\frac{3}{3}$	$-\frac{15}{15}s_c$	-2 = -730	$a = s_c = 0$
1 .	1 . 1	2.2	Z = 736
$\frac{1}{3}a +$	$b + \frac{1}{15}s_c$	= 32	Z = 750
8	1		b = 32
$\frac{0}{2}a$	$-\frac{4}{15}s_{c}+s_{h}$	= 32	
0	10		$s_h = 32$
$\frac{85}{3}a$	$-\frac{4}{3}s_{c} + s_{m}$	= 550	c <u>- 550</u>
3 •	330 134	1 - 550	$s_m = 550$
a	h c c c	$a \geq 0$	
u ,	b , s_c , s_h , s_n	$i \ge 0$	

max Z			
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$
5	15	L = 150	$a = s_c = 0$
$\frac{1}{3}a +$	$b + \frac{1}{15}s_c$	= 32	Z = 736
8	$-\frac{4}{15}s_c + s_h$	= 32	b = 32
5	10	- 32	$s_h = 32$
$\frac{85}{3}a$	$-\frac{4}{3}s_{c}$ + s	m = 550	$s_m = 550$
5	,	0	
a ,	b , s_c , s_h , s	$m \geq 0$	

Computing $min{3 \cdot 32, 3 \cdot 32/8, 3 \cdot 550/85}$ means pivot on line 2.

max Z			hasis (h.a. a.)
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$
5	15		$a = s_c = 0$
$\frac{1}{3}a$ -	$+b+\frac{1}{15}s_c$	= 32	Z = 736
8	$-\frac{4}{15}s_{c}+s_{h}$	= 32	b = 32
0	10	- 52	$s_h = 32$
$\frac{85}{3}a$	$-\frac{4}{3}s_c + s_m$	= 550	$s_m = 550$
a	, b, s _c , s _h , s _m	≥ 0	
u	$, \nu, s_c, s_h, s_m$	<u> </u>	

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z	
$\frac{16}{3}a - \frac{23}{15}s_c - Z = -736$	$basis = \{b, s_h, s_m\}$
$\frac{1}{3}a - \frac{1}{15}s_c - 2 = -750$	$a = s_c = 0$
$\frac{1}{3}a + b + \frac{1}{15}s_c = 32$	Z = 736
5 15	1. 20
$\frac{8}{3}a - \frac{4}{15}s_c + s_h = 32$	b = 32
	$s_h = 32$
$\frac{85}{3}a - \frac{4}{3}s_c + s_m = 550$	$s_m = 550$
1	
$a, b, s_c, s_h, s_m \geq 0$	

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z $- s_{c} - 2s_{h} - Z = -800$ $b + \frac{1}{10}s_{c} - \frac{1}{8}s_{h} = 28$ $a - \frac{1}{10}s_{c} + \frac{3}{8}s_{h} = 12$ $\frac{3}{2}s_{c} - \frac{85}{8}s_{h} + s_{m} = 210$ $a, b, s_{c}, s_{h}, s_{m} \ge 0$

basis = $\{a, b, s_m\}$ $s_c = s_h = 0$ Z = 800 b = 28 a = 12 $s_m = 210$

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: 2 = 800 s = 2 s₀ s = 0 s₀ = 0
- hence optimum solution value is at most 800.
- The current solution has value 8000

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

any feasible solution satisfies all equations in the tableaux in particular. A solution satisfies all equations in the tableaux hence optimum solution value is at most 2002 the current solution has value 2002

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h, s_c \ge 0, s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800

the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Let our linear program be

$$\begin{array}{rclcrcrc} c_B^T x_B &+& c_N^T x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &, & x_N &\geq & 0 \end{array}$$

The simplex tableaux for basis *B* is

$$\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &,& x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , x_N \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$$

$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$$

$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

4 Simplex Algorithm

• Given basis *B* with BFS x^* .

• Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$. Other non-basis variables should star at the Basis variables change to maintain feasibility.

• Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

d₁ == 1 (normalization)

 $A(x^2 + \partial d) = b$ must hold. Hence Ad = 0.

Altogether: Altogether

• Given basis *B* with BFS x^* .

• Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.

• Other non-basis variables should stay at 0.

Basis variables change to maintain feasibility.

• Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

d₁ == 1 (normalization)

Alpen = 0.0 = b must hold. Hence Ad = 0.

Altogether: And a state of the Q, which gives

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_{ij} = 1$ (normalization)
- $\mathbb{P} = \mathbb{A}(x^2 + 0.0) = h$ must hold. Hence $\mathbb{A}(x = 0)$.
- Altogether: Automatical Automatical Operation By which gives

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.

• Go from x^* to $x^* + \theta \cdot d$.

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*: (normalization)

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0$, $\ell \notin B$, $\ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

Definition 26 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$$

4 Simplex Algorithm

Definition 26 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$$

Definition 27 (Reduced Cost)

For a basis B the value

$$\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &,& x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , \qquad x_N \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$$

$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$$

$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value 9 by which we can safely increase the entering variable? How do we find the initial basic feasible solution?
- Is there always a basis // such that

- Then we can terminate because we know that the solution is a optimal.
- If yes how do we make sure that we reach such a basis?

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0 \ ?$$

Then we can terminate because we know that the solution is optimal.

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase *b*. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase *b*. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy) A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy) A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy) A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Non Degenerate Example

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- If several variables have minimum b_l/A_{le} you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- ► If several variables have minimum b_ℓ/A_{ℓe} you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- ► If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,...,m} then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- ► If several variables have minimum b_ℓ/A_{ℓe} you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,...,m} then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- ► If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,...,m} then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that b_ℓ/A_{ℓe} is minimal among all variables i with A_{ie} > 0.
- ► If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

• $Ax \leq b, x \geq 0$, and $b \geq 0$.

- The standard slack form for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where *s* denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- ► The standard slack form for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where *s* denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack form for this problem is Ax + Is = b, x ≥ 0, s ≥ 0, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- ► The standard slack form for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where *s* denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- ► The standard slack form for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where *s* denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- Multiply all rows with $b_0 < 0$ by -1.
- If $\mathbb{C}_{1} \to \mathbb{C}^{2}$, then the original problem is
- Otw. you have see 0 with Assess.
- Erom this you can get basic feasible solution.
- Now you can start the Simplex for the original problem.

- 1. Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

Optimality

Lemma 29

Let *B* be a basis and x^* a BFS corresponding to basis *B*. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

How do we get an upper bound to a maximization LP?

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15 b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a, b	≥ 0

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 31 The dual of the dual problem is the primal problem.

Proof:

The dual problem is

5.1 Weak Duality

9. Jul. 2022 79/462

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $\blacktriangleright w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

• $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

0 < 3. do 10. do 10. do 10. do 20. do 10. do 10.

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\flat w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

The dual problem is

- ► $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
 - $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

$$\bullet w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\bullet \quad w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \; .$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \ .$

 $A^{T}\hat{\boldsymbol{y}} \ge \boldsymbol{c} \Rightarrow \hat{\boldsymbol{x}}^{T}A^{T}\hat{\boldsymbol{y}} \ge \hat{\boldsymbol{x}}^{T}\boldsymbol{c} \ (\hat{\boldsymbol{x}} \ge 0)$ $A\hat{\boldsymbol{x}} \le \boldsymbol{b} \Rightarrow \boldsymbol{y}^{T}A\hat{\boldsymbol{x}} \le \hat{\boldsymbol{y}}^{T}\boldsymbol{b} \ (\hat{\boldsymbol{y}} \ge 0)$ This choice

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{\gamma} \ge c \Rightarrow \hat{x}^T A^T \hat{\gamma} \ge \hat{x}^T c \ (\hat{\chi} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If *P* is unbounded then *D* is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$\begin{aligned} A^T \hat{y} &\geq c \Rightarrow \hat{x}^T A^T \hat{y} \geq \hat{x}^T c \ (\hat{x} \geq 0) \\ A \hat{x} &\leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0) \end{aligned}$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$$
$$A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$\begin{aligned} A^T \hat{y} &\geq c \Rightarrow \hat{x}^T A^T \hat{y} \geq \hat{x}^T c \ (\hat{x} \geq 0) \\ A \hat{x} &\leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0) \end{aligned}$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

 $\max\{c^T x \mid Ax = b, x \ge 0\}$

Primal:

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$
$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{[b^T - b^T]y \mid [A^T - A^T]y \ge c, y \ge 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$
$$= \min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

5.2 Simplex and Duality

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T y' \mid A^T y' \ge c\right\}$$

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (Ax^{*})^{T} y^{*} = (A_{B} x_{B}^{*})^{T} y^{*}$ $= (A_{B} x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x_{B}^{*})^{T} y^{*}$ $= (A_{B} x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x_{B}^{*})^{T} y^{*}$ $= (A_{B} x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

5.3 Strong Duality

 $P = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

 $n_{ar{A}}=n_A$, $m_{ar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T \gamma \mid \bar{A}^T \gamma = c, \gamma \ge 0\}.$$

5.3 Strong Duality

If we have a conic combination y of c then $b^T y$ is an upper bound of the profit we can obtain (weak duality):

$$c^T x = (\bar{A}^T y)^T x = y^T \bar{A} x \le y^T \bar{b}$$

If x and y are optimal then the duality gap is 0 (strong duality). This means

$$0 = c^T x - y^T \bar{b}$$
$$= (\bar{A}^T y)^T x - y^T \bar{b}$$
$$= y^T (\bar{A}x - \bar{b})$$

The last term can only be 0 if y_i is 0 whenever the *i*-th constraint is not tight. This means we have a conic combination of c by normals (columns of \tilde{A}^T) of *tight* constraints.

Conversely, if we have x such that the normals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.

The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

(without proof)

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

• Define f(x) = ||y - x||.

We want to apply Weierstrass but X may not be bounded.

- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ► Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ► Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

5.3 Strong Duality

5.3 Strong Duality

9. Jul. 2022 91/462

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 $\|y - x^*\|^2$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

5.3 Strong Duality

9. Jul. 2022 91/462

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha$ for all $x \in X$)

• Let $x^* \in X$ be closest point to y in X.

- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

9. Jul. 2022 93/462

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.

• Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$

5.3 Strong Duality

9. Jul. 2022 93/462

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

9. Jul. 2022 93/462

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Farkas Lemma

If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

```
Rewrite the conditions:

1. \exists x \in \mathbb{R}^n with \begin{bmatrix} A & I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0

2. \exists y \in \mathbb{R}^m with \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0
```


Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax \leq b$, $x \geq 0$

2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w .

 $z \leq w$: follows from weak duality

- $z \leq w$: follows from weak duality
- $z \ge w$:

- $z \leq w$: follows from weak duality
- $z \ge w$:
- We show $z < \alpha$ implies $w < \alpha$.

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$			
s.t.	Ax	\leq	b
	$-c^T x$	\leq	$-\alpha$
	x	\geq	0

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t.
$$Ax \leq b$$
$$s.t.$$
$$A^Ty - cv \geq 0$$
$$-c^Tx \leq -\alpha$$
$$b^Ty - \alpha v < 0$$
$$x \geq 0$$
$$y, v \geq 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible.

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$

s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

- Hence, there exists a solution y, v with v > 0.
- We can rescale this solution (scaling both y and v) s.t. v = 1.
- Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1. Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- - We can prove this by providing an optimal basis for the duality
- A verifier can check that the associated dual solution fulfills

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.

A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \leq y^{*T} A x^* \leq b^T y^*$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (y^{T}A - c^{T})_{j} x_{j}^{*} = 0$$

5.4 Interpretation of Dual Variables

9. Jul. 2022 104/462

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (\mathcal{Y}^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Brewer: find mix of ale and beer that maximizes profits

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min	480 <i>C</i>	+	160H	+	1190M	
s.t.	5 <i>C</i>	+	4H	+	35 <i>M</i>	≥ 13
	15 <i>C</i>	+	4H	+	20 <i>M</i>	≥ 23
					C, H, M	≥ 0

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Brewer: find mix of ale and beer that maximizes profits

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

1	1190M	+	160H	+	480 <i>C</i>	min
1 ≥	35 <i>M</i>	+	4H	+	5 <i>C</i>	s.t.
1 ≥	20 <i>M</i>	+	4H	+	15 <i>C</i>	
1 ≥	C, H, M					

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T) y \\ \text{s.t.} & A^T y \geq c \\ & y \geq 0 \end{array}$$

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/462

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T)y \\ \text{s.t.} & A^Ty & \geq c \\ & y & \geq 0 \end{array}$$

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/462

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/462

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T)y \\ \text{s.t.} & A^Ty & \geq c \\ & y & \geq 0 \end{array}$$

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corr) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

The change in profit when increasing hops by one unit is $= c_B^T A_B^{-1} e_h$.

The change in profit when increasing hops by one unit is

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{Y}^*} e_h.$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

 $0 \leq f_{xy} \leq c_{xy}$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

9. Jul. 2022 110/462

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

 $0 \leq f_{xy} \leq c_{xy}$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \ .$$

(flow conservation constraints)

Definition 43 The value of an (s,t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem: Find an (s,t)-flow with maximum value.

5.5 Computing Duals

9. Jul. 2022 111/462

Definition 43 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

max		$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
s.t.	$\forall (z, w) \in V \times V$	f_{zw}	\leq	C_{ZW}	ℓ_{zw}
	$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz}$			
		f_{zw}	\geq	0	

max		$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
s.t.	$\forall (z, w) \in V \times V$	f_{zw}	\leq	C_{ZW}	ℓ_{zw}
	$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz}$	=	0	p_w
		f_{zw}	\geq	0	

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	\geq	0
	$f_{sy}(y \neq s,t)$:	$1\ell_{sy}$ $+1p_y$	\geq	1
	$f_{xs} (x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	-1
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	\geq	0
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}-1p_x$	\geq	0
	f_{st} :	$1\ell_{st}$	\geq	1
	f_{ts} :	$1\ell_{ts}$	\geq	-1
l		ℓ_{xy}	\geq	0

5.5 Computing Duals

5.5 Computing Duals

9. Jul. 2022 113/462

with $p_t = 0$ and $p_s = 1$.

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t(where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality ($d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t)$).

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

6 Degeneracy Revisited

9. Jul. 2022 117/462

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

1. LP' is feasible

(i.e. a) of basis variables corresponds to an infeasible basis in (i.e. a) (1992-0) then is corresponds to an infeasible basis in (i.e. a) (note that columns in size are linearly independent).

10 has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

If a set 2 of basis variables corresponds to an exceeded basis (i.e. 25, 222, 0) then 2 corresponds to an infeasible basis in 22 (note that columns in 25, are linearly independent).

11 has no degenerate basic solutions.

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **I.** LP' is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- **III.** LP' has no degenerate basic solutions

Perturbation

Let *B* be index set of some basis with basic solution

 $x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$ (i.e. *B* is feasible)

$$b':=b+A_Begin{pmatrix}arepsilon\arepsil$$

This is the perturbation that we are using.

6 Degeneracy Revisited

9. Jul. 2022 120/462

Perturbation

Let *B* be index set of some basis with basic solution

 $x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$ (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b + A_B\left(\frac{\varepsilon}{\vdots}\\\varepsilon^m\right)\right) = x_B^* + \left(\frac{\varepsilon}{\vdots}\\\varepsilon^m\right) \ge 0$$

6 Degeneracy Revisited

9. Jul. 2022 121/462

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$

6 Degeneracy Revisited

9. Jul. 2022 121/462

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\frac{\varepsilon}{\vdots}\\\varepsilon^{m}\right)\right)\right)_{i}$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Hence, \tilde{B} is not feasible.

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{g}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Since, there are no degeneracies Simplex will terminate when run on $\ensuremath{\mathrm{LP}}'.$

Since, there are no degeneracies Simplex will terminate when run on $\mbox{LP}'.$

If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$$

then we have found an optimal basis.

Since, there are no degeneracies Simplex will terminate when run on $\mbox{LP}'.$

If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

Since, there are no degeneracies Simplex will terminate when run on $\mbox{LP}'.$

If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the *j*-th basis direction *d*, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea: Simulate behaviour of LP' without explicitly doing a perturbation.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited

9. Jul. 2022 126/462 We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

6 Degeneracy Revisited

9. Jul. 2022 127/462

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

6 Degeneracy Revisited

9. Jul. 2022 127/462

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$$

$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

6 Degeneracy Revisited

9. Jul. 2022 128/462

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes $\theta_{\ell} = \frac{\hat{h}_{\ell}}{\hat{A}_{ee}} = \frac{(A_{ee}^{-1}b)_{\ell}}{(A_{ee}^{-1}A_{ee})_{\ell}}$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. *B* = {1,3,7,14} and leaving variable is 3 then ℓ = 2.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Definition 44

 $u \leq_{\text{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

 LP^\prime chooses an index that minimizes

 θ_ℓ

6 Degeneracy Revisited

9. Jul. 2022 131/462

 LP^\prime chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_B^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)\right)_{\ell}}{(A_B^{-1}A_{*\ell})_{\ell}}$$

6 Degeneracy Revisited

9. Jul. 2022 131/462

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_B^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)\right)_{\ell}}{(A_B^{-1}A_{\ast e})_{\ell}} = \frac{\left(A_B^{-1}(b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)_{\ell}}{(A_B^{-1}A_{\ast e})_{\ell}}$$

6 Degeneracy Revisited

9. Jul. 2022 131/462

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_B^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} = \frac{\left(A_B^{-1}(b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}$$
$$= \frac{\ell \text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

9. Jul. 2022 131/462

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

9. Jul. 2022 132/462

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

7 Klee Minty Cube

9. Jul. 2022 133/462

Each iteration of Simplex can be implemented in polynomial time.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Observation

Simplex visits every feasible basis at most once.

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

Example

2n constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^n vertices.

7 Klee Minty Cube

9. Jul. 2022 135/462

Example

However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables *x*^{*i*} stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting ε → 0.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting ε → 0.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0,...,0,1) is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- Our sequence S_n starts at (0, ..., 0) ends with (0, ..., 0, 1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- ► Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

Klee Minty Cube

Klee Minty Cube

The sequence S_n that visits every node of the hypercube is defined recursively

$$(0, ..., 0, 0, 0)$$

$$\begin{cases} S_{n-1} \\ (0, ..., 0, 1, 0) \\ \downarrow \\ (0, ..., 0, 1, 1) \\ \vdots \\ S_{n-1}^{\mathsf{rev}} \\ (0, ..., 0, 0, 1) \end{cases}$$

The non-recursive case is $S_1 = 0 \rightarrow 1$

7 Klee Minty Cube

9. Jul. 2022 142/462

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of Symmetry
- By induction hypothesis accessis increasing along Source hence, also accessing
- For the remaining path $S_{1}^{(2)}$, we have s_{2} and s_{3} and s_{4}
- By induction hypothesis as a fills increasing along Social hence economics increasing along SSC

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- \sim For the first part the value of $\infty_0 = \infty_0$.
- By induction hypothesis or colls increasing along or coll hence, also or collections.
- For the remaining path Spain we have some the community
- By induction hypothesis as a fills increasing along Social hence economics increasing along SSC

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of Some Observation
- By induction hypothesis accessis increasing along accessing hence, also access
- For the remaining path S[25] we have some line community
- By induction hypothesis as a fills increasing along Social hence economics increasing along SSC

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- Going from (0, ..., 0, 1, 0) to (0, ..., 0, 1, 1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0, ..., 0, 1, 0) to (0, ..., 0, 1, 1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ε.
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

 $n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ε.
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.

By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ε.
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time $(\Omega(2^{\Omega(n)}))$ (e.g. Klee Minty 1972).

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha > 0$) (Friedmann, Hansen, Zwick 2011).

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than m - d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form O(poly(m, d)) is open.

Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.

- ▶ In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time O(d! · m), i.e., linear in m.

- Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- ▶ In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time O(d! · m), i.e., linear in m.

- Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- ▶ In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time O(d! · m), i.e., linear in m.

- Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- ▶ In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

Setting:

We assume an LP of the form

$$\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax &\geq b \\ & x &\geq 0 \end{array}$$

• We assume that the LP is bounded.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{|c|c|c|} \min & c^T x \\ \text{s.t.} & Ax &\geq b \\ & x &\geq 0 \end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on c^Tx for any basic feasible solution.

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with $ar{A}.$

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with $ar{A}.$

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \overline{A} .

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \overline{A} .

Theorem 46 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

 $x_i = rac{\det(M_j)}{\det(M)}$,

where M_i is the matrix obtained from M by replacing the *i*-th column by the vector b.

Define Define

Eurther, we have

Hence,

8 Seidels LP-algorithm

9. Jul. 2022 153/462

Define

$$X_{i} = \begin{pmatrix} | & | & | & | \\ e_{1} \cdots e_{i-1} \mathbf{x} e_{i+1} \cdots e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the *i*-th column gives that $det(X_i) = x_i$.

Further, we have

$$\begin{split} MX_i = \begin{pmatrix} | & | & | & | & | \\ Me_1 & \cdots & Me_{i-1} & Mx & Me_{i+1} & \cdots & Me_n \\ | & | & | & | \end{pmatrix} = M_i \\ \end{split}$$
 Hence,
$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)} \end{split}$$

Define

$$X_{i} = \begin{pmatrix} | & | & | & | \\ e_{1} \cdots e_{i-1} \mathbf{x} e_{i+1} \cdots e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the *i*-th column gives that $det(X_i) = x_i$.

$$MX_{i} = \begin{pmatrix} | & | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

Hence,
$$x_{i} = \det(X_{i}) = \frac{\det(M_{i})}{\det(M)}$$

Define

$$X_{i} = \begin{pmatrix} | & | & | & | & | \\ e_{1} \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots & e_{n} \\ | & | & | & | & | \end{pmatrix}$$

Note that expanding along the *i*-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{i} = \begin{pmatrix} | & | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

Hence,
$$x_{i} = \det(X_{i}) = \frac{\det(M_{i})}{\det(M)}$$

8 Seidels LP-algorithm

9. Jul. 2022 153/462

Define

$$X_{i} = \begin{pmatrix} | & | & | & | & | \\ e_{1} \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots & e_{n} \\ | & | & | & | & | \end{pmatrix}$$

Note that expanding along the *i*-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{i} = \begin{pmatrix} | & | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

Hence,
$$x_{i} = \det(X_{i}) = \frac{\det(M_{i})}{\det(M)}$$

Let *Z* be the maximum absolute entry occuring in \bar{A} , \bar{b} or *c*. Let *C* denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*).

Observe that

 $|\det(C)|$

Here $sgn(\pi)$ denotes the sign of the permutation, which is 1 if the permutation can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd. The first identity is known as Leibniz formula.

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

Here $sgn(\pi)$ denotes the sign of the permutation, which is 1 if the permutation can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd.

The first identity is known as Leibniz formula.

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*).

Observe that

 $|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$ $\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$ Here $\operatorname{sgn}(\pi)$ denotes the sign of the permutation, which is 1 if the permutation can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd. The first identity is known as Leibniz formula.

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*).

Observe that

 $|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$ $\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$ $\leq m! \cdot Z^m \quad \text{Here sgn}(\pi) \text{ denotes the sign of the permutation can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd. The first identity is known as Leibniz formula.$

Alternatively, Hadamards inequality gives

 $|\det(C)|$

8 Seidels LP-algorithm

9. Jul. 2022 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^m \|C_{*i}\|$$

8 Seidels LP-algorithm

9. Jul. 2022 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

8 Seidels LP-algorithm

9. Jul. 2022 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$
$$\le m^{m/2} Z^m .$$

8 Seidels LP-algorithm

9. Jul. 2022 155/462

Hadamards Inequality

Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $||e_1|| = ||a_1||$, $||e_2|| = ||a_2||$, $||e_3|| = ||a_3||$).

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{|c|c|c|c|}\hline \min & c^T x \\ \text{s.t.} & Ax &\geq b \\ & x &\geq 0 \end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint c^Tx ≥ -dZ(m! · Z^m) - 1. Note that this constraint is superfluous unless the LP is unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

- ► If the cost is $c^T x = -(dZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

1: if d = 1 then solve 1-dimensional problem and return;

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills *h* with equality, i.e., $a_h^T x = b_h$

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills *h* with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \mathsf{SeidelLP}(\hat{\mathcal{H}}, d-1)$

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \varnothing$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \mathsf{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: return infeasible

14: else

15: add the value of x_ℓ to \hat{x}^* and return the solution

Note that for the case d = 1, the asymptotic bound $O(\max\{m, 1\})$ is valid also for the case m = 0.

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

Note that for the case d = 1, the asymptotic bound $O(\max\{m, 1\})$ is valid also for the case m = 0.

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If *d* > 1 and *m* = 0 we take time O(*d*) to return *d*-dimensional vector *x*.
- ▶ The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function


```
Note that for the case d = 1, the asymptotic bound O(\max\{m, 1\}) is valid also for the case m = 0.
```

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function


```
Note that for the case d = 1, the asymptotic bound O(\max\{m, 1\}) is valid also for the case m = 0.
```

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill *h* we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function


```
Note that for the case d = 1, the asymptotic bound O(\max\{m, 1\}) is valid also for the case m = 0.
```

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(\max\{1,m\}) & \text{if } d = 1\\ \mathcal{O}(d) & \text{if } d > 1 \text{ and } m = 0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let *C* be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let *C* be the largest constant in the O-notations.

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

T(m,1)

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m,1) \le C \max\{1,m\}$

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m,1) \leq C \max\{1,m\} \leq Cf(1) \max\{1,m\}$

Let *C* be the largest constant in the O-notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \leq \mathcal{O}(d)$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\}$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

 $\begin{aligned} d > 1; m &= 0: \\ T(0, d) \leq \mathcal{O}(d) \leq Cd \leq Cf(d) \max\{1, m\} \text{ for } f(d) \geq d \end{aligned}$

d > 1; m = 1:T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1))

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0: $T(0, d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$

d > 1; m = 1: T(1, d) = O(d) + T(0, d) + d(O(d) + T(0, d - 1)) $\leq Cd + Cd + Cd^2 + dCf(d - 1)$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0: $T(0, d) \le O(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$

d > 1; m = 1: T(1, d) = O(d) + T(0, d) + d(O(d) + T(0, d - 1)) $\leq Cd + Cd + Cd^{2} + dCf(d - 1)$ $\leq Cf(d) \max\{1, m\}$

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0: $T(0, d) \le O(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$

d > 1; m = 1: T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1)) $\leq Cd + Cd + Cd^{2} + dCf(d-1)$ $\leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq 3d^{2} + df(d-1)$

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

d > 1; m > 1: (by induction hypothesis statm. true for d' < d, $m' \ge 0$; and for d' = d, m' < m)

$$\begin{split} T(m,d) &= \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big) \\ &\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1) \\ &\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1) \end{split}$$

8 Seidels LP-algorithm

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

d > 1; m > 1: (by induction hypothesis statm. true for d' < d, $m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if $f(d) \ge df(d-1) + 2d^2$.

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

f(d)

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

 $f(d) = 3d^2 + df(d-1)$

8 Seidels LP-algorithm

9. Jul. 2022 166/462

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^{2} + df(d-1)$$

= $3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$\begin{aligned} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \end{aligned}$$

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$\begin{aligned} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \\ &= 3d^2 + 3d(d-1)^2 + 3d(d-1)(d-2)^2 + \dots \\ &+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^2 \end{aligned}$$

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$\begin{aligned} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \\ &= 3d^2 + 3d(d-1)^2 + 3d(d-1)(d-2)^2 + \dots \\ &+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^2 \\ &= 3d! \left(\frac{d^2}{d!} + \frac{(d-1)^2}{(d-1)!} + \frac{(d-2)^2}{(d-2)!} + \dots\right) \end{aligned}$$

8 Seidels LP-algorithm

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$\begin{aligned} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \\ &= 3d^2 + 3d(d-1)^2 + 3d(d-1)(d-2)^2 + \dots \\ &+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^2 \\ &= 3d! \left(\frac{d^2}{d!} + \frac{(d-1)^2}{(d-1)!} + \frac{(d-2)^2}{(d-2)!} + \dots\right) \\ &= \mathcal{O}(d!) \end{aligned}$$

• Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$\begin{split} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \\ &= 3d^2 + 3d(d-1)^2 + 3d(d-1)(d-2)^2 + \dots \\ &+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^2 \\ &= 3d! \left(\frac{d^2}{d!} + \frac{(d-1)^2}{(d-1)!} + \frac{(d-2)^2}{(d-2)!} + \dots\right) \\ &= \mathcal{O}(d!) \end{split}$$

since $\sum_{i\geq 1} \frac{i^2}{i!}$ is a constant.

$$\sum_{i \ge 1} \frac{i^2}{i!} = \sum_{i \ge 0} \frac{i+1}{i!} = e + \sum_{i \ge 1} \frac{i}{i!} = 2e$$

8 Seidels LP-algorithm

9. Jul. 2022 166/462

Complexity

LP Feasibility Problem (LP feasibility A)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$?

LP Feasibility Problem (LP feasibility B) Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Find $x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$!

LP Optimization A

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. What is the maximum value of $c^T x$ for a feasible point $x \in \mathbb{R}^n$?

LP Optimization B

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. Return feasible point $x \in \mathbb{R}^n$ with maximum value of $c^T x$?

Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

$\lceil \log_2(|a|) \rceil + 1$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

 $\lceil \log_2(|a|) \rceil + 1$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

 $\lceil \log_2(|a|) \rceil + 1$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

 $\lceil \log_2(|a|) \rceil + 1$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

- In the following we sometimes refer to L := ⟨A⟩ + ⟨b⟩ as the input size (even though the real input size is something in Θ(⟨A⟩ + ⟨b⟩)).
- Sometimes we may also refer to L := ⟨A⟩ + ⟨b⟩ + n log₂ n as the input size. Note that n log₂ n = Θ(⟨A⟩ + ⟨b⟩).
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L).

```
Note that m \log_2 m may be much larger than \langle A \rangle + \langle b \rangle.
```


Suppose that $\bar{A}x = b$; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

 $x_B = \bar{A}_B^{-1} b$

and all other entries in x are 0.

In the following we show that this x has small encoding length and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short...

9. Jul. 2022 170/462 Suppose that $\bar{A}x = b$; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

 $x_B = \bar{A}_B^{-1} b$

and all other entries in x are 0.

In the following we show that this x has small encoding length and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short...

Size of a Basic Feasible Solution

- A: original input matrix
- \bar{A} : transformation of A into standard form
- \bar{A}_B : submatrix of \bar{A} corresponding to basis B

Lemma 47

Let $\bar{A}_B \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^m$. Define $L = \langle A \rangle + \langle b \rangle + n \log_2 n$. Then a solution to $\bar{A}_B x_B = b$ has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(\bar{A}_B^J)}{\det(\bar{A}_B)}$$

where \bar{A}_B^j is the matrix obtained from \bar{A}_B by replacing the *j*-th column by the vector *b*.

Size of a Basic Feasible Solution the number of columns in A which

A: original input matrix

- Note that n in the theorem denotes may be much smaller than *m*.
- \blacktriangleright \bar{A} : transformation of A into standard form
- \blacktriangleright \bar{A}_{B} : submatrix of \bar{A} corresponding to basis B

Lemma 47

Let $\bar{A}_B \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^m$. Define $L = \langle A \rangle + \langle b \rangle + n \log_2 n$. Then a solution to $\bar{A}_B x_B = b$ has rational components x_i of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(\bar{A}_B^j)}{\det(\bar{A}_B)}$$

where \bar{A}_{R}^{j} is the matrix obtained from \bar{A}_{B} by replacing the *j*-th column by the vector **b**.

Bounding the Determinant

Let $X = \overline{A}_B$. Then

 $|\det(X)|$

Bounding the Determinant

Let $X = \overline{A}_B$. Then

 $|\det(X)| = |\det(\bar{X})|$

Bounding the Determinant

Let $X = \bar{A}_B$. Then $|\det(X)| = |\det(\bar{X})|$ $= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$

Let $X = \bar{A}_B$. Then $|\det(X)| = |\det(\bar{X})|$ $= \left| \sum_{\pi \in S_{\bar{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$ $\le \sum_{\pi \in S_{\bar{n}}} \prod_{1 \le i \le \tilde{n}} |\bar{X}_{i\pi(i)}|$

Let $X = \tilde{A}_B$. Then $|\det(X)| = |\det(\tilde{X})|$ $= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \tilde{X}_{i\pi(i)} \right|$ $\le \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} |\tilde{X}_{i\pi(i)}|$ $\le n! \cdot 2^{\langle A \rangle + \langle b \rangle}$

Let $X = \bar{A}_B$. Then $|\det(X)| = |\det(\bar{X})|$ $= \left| \sum_{\pi \in S_{\bar{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \bar{n}} \bar{X}_{i\pi(i)} \right|$ $\le \sum_{\pi \in S_{\bar{n}}} \prod_{1 \le i \le \bar{n}} |\bar{X}_{i\pi(i)}|$ $\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L$.

Let $X = \overline{A}_B$. Then $|\det(X)| = |\det(\overline{X})|$ $= \left| \sum_{\pi \in S_{\overline{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \overline{n}} \overline{X}_{i\pi(i)} \right|$ $\le \sum_{\pi \in S_{\overline{n}}} \prod_{1 \le i \le \overline{n}} |\overline{X}_{i\pi(i)}|$ $\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L$.

Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A with $\tilde{n} \le n$.

Let $X = \overline{A}_R$. Then $|\det(X)| = |\det(\bar{X})|$ $= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$ $\leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}} |\bar{X}_{i\pi(i)}|$ When computing the determinant of $X = \bar{A}_R$ $\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^{L}$ we first do expansions along columns that were introduced when transforming A into standard form, i.e., into \bar{A} . Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A Such a column contains a single 1 and the remaining entries of the column are 0. with $\tilde{n} < n$. Therefore, these expansions do not increase the absolute value of the determinant. After we did expansions for all these columns we Analogously for $det(A_R^J)$. are left with a square sub-matrix of A of size at most $n \times n$.

Given an LP $\max\{c^T x \mid Ax \le b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') \ ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Given an LP $\max\{c^T x \mid Ax \le b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') \ ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Given an LP max{ $c^T x | Ax \le b; x \ge 0$ } do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') \ ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Given an LP max{ $c^T x | Ax \le b; x \ge 0$ } do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Given an LP max{ $c^T x | Ax \le b; x \ge 0$ } do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\max} + 1$ and check for feasibility.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\max} + 1$ and check for feasibility.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{max} + 1$ and check for feasibility.

9 The Ellipsoid Algorithm

Let *K* be a convex set.

9 The Ellipsoid Algorithm

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.

9 The Ellipsoid Algorithm

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.

9 The Ellipsoid Algorithm

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

K

• z

Ε

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.

E

K

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.

E

K

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.
- REPEAT

Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

A ball in \mathbb{R}^n with center *c* and radius *r* is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\} \\ = \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

An affine transformation of the unit ball is called an ellipsoid.

An affine transformation of the unit ball is called an ellipsoid.

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

f(B(0,1))

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

 $f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$

An affine transformation of the unit ball is called an ellipsoid.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}\$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}\$

An affine transformation of the unit ball is called an ellipsoid.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1} L^{-1}(y-t) \le 1\}$

An affine transformation of the unit ball is called an ellipsoid.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$

where $Q = LL^T$ is an invertible matrix.

How to Compute the New Ellipsoid

9 The Ellipsoid Algorithm

9. Jul. 2022 180/462

How to Compute the New Ellipsoid

• Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

9 The Ellipsoid Algorithm

9. Jul. 2022 180/462

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.

9 The Ellipsoid Algorithm

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.
- Compute the new center ĉ' and the new matrix Q' for this simplified setting.

9 The Ellipsoid Algorithm

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.

9 The Ellipsoid Algorithm

• The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.

The vectors e₁, e₂, ... have to fulfill the ellipsoid constraint with equality. Hence (e_i − ĉ')^TQ̂'⁻¹(e_i − ĉ') = 1.

- The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2, ...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^T \hat{Q}'^{-1} (e_i \hat{c}') = 1$.

- To obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

- To obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.

The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

- To obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

• As $\hat{Q}' = \hat{L}' \hat{L}'^t$ the matrix \hat{Q}'^{-1} is of the form

$$\hat{Q'}^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0\\ 0 & \frac{1}{b^2} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

9 The Ellipsoid Algorithm

$$(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1 \text{ gives}$$

$$\begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

• This gives $(1 - t)^2 = a^2$.

9 The Ellipsoid Algorithm

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

This gives
$$\frac{t^2}{a^2} + \frac{1}{b^2} = 1$$
, and hence
 $\frac{1}{b^2} = 1 - \frac{t^2}{a^2}$

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

• This gives
$$\frac{t^2}{a^2} + \frac{1}{b^2} = 1$$
, and hence
 $\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2}$

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

This gives
$$\frac{t^2}{a^2} + \frac{1}{b^2} = 1$$
, and hence
 $\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$

Summary

So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We still have many choices for *t*:

Choose *t* such that the volume of \hat{E}' is minimal!!!

9 The Ellipsoid Algorithm

We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 51 Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

 $\operatorname{vol}(L(K)) = |\det(L)| \cdot \operatorname{vol}(K)$.

We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 51 Let *L* be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

 $\operatorname{vol}(L(K)) = |\det(L)| \cdot \operatorname{vol}(K)$.

n-dimensional volume

9 The Ellipsoid Algorithm

• We want to choose t such that the volume of \hat{E}' is minimal.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$,

Note that a and b in the above equations depend on t, by the previous equations.

9. Jul. 2022 190/462

• We want to choose t such that the volume of \hat{E}' is minimal.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$,

Note that a and b in the above equations depend on t, by the previous equations.

9. Jul. 2022 190/462

• We want to choose t such that the volume of \hat{E}' is minimal.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$,

Note that a and b in the above equations depend on t, by the previous equations.

$\mathrm{vol}(\hat{E}')$

9 The Ellipsoid Algorithm

9. Jul. 2022 191/462

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$

 $vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$ $= vol(B(0,1)) \cdot ab^{n-1}$

9. Jul. 2022 191/462

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

= vol(B(0,1)) \cdot ab^{n-1}
= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}} \right)^{n-1}

9 The Ellipsoid Algorithm

9. Jul. 2022 191/462

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

= $vol(B(0,1)) \cdot ab^{n-1}$
= $vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$
= $vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

= $vol(B(0,1)) \cdot ab^{n-1}$
= $vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$
= $vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$

We use the shortcut $\Phi := \operatorname{vol}(B(0, 1))$.

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2}$$
$$\boxed{N = \text{denominator}}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left(\frac{(-1) \cdot n(1-t)^{n-1}}{(\mathrm{derivative of numerator})^{n-1}} \right)$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$
denominator

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} - (n-1)(\sqrt{1-2t})^{n-2} \right)$$
outer derivative

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \right) \\ &\quad (\text{inner derivative}) \end{aligned}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right)$$
$$\underbrace{\operatorname{numerator}}_{\text{numerator}}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(\underline{1-t})^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (\underline{-2}) \cdot (\underline{1-t})^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\ &\quad \cdot \left((n-1)(1-t) - n(1-2t) \right) \end{aligned}$$

9 The Ellipsoid Algorithm

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\ &\quad \cdot \left((n-1)(1-t) - n(1-2t) \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right) \end{split}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

a = 1 - t

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b =$

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}}$

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

 b^2

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^2 = \frac{(1-t)^2}{1-2t}$$

9 The Ellipsoid Algorithm

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}}$$

9 The Ellipsoid Algorithm

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}}$$

9 The Ellipsoid Algorithm

• We obtain the minimum for $t = \frac{1}{n+1}$.

For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

9 The Ellipsoid Algorithm

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

 γ_n^2

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{aligned} \gamma_n^2 &= \Big(\frac{n}{n+1}\Big)^2 \Big(\frac{n^2}{n^2-1}\Big)^{n-1} \\ &= \Big(1 - \frac{1}{n+1}\Big)^2 \Big(1 + \frac{1}{(n-1)(n+1)}\Big)^{n-1} \end{aligned}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{split} y_n^2 &= \Big(\frac{n}{n+1}\Big)^2 \Big(\frac{n^2}{n^2-1}\Big)^{n-1} \\ &= \Big(1 - \frac{1}{n+1}\Big)^2 \Big(1 + \frac{1}{(n-1)(n+1)}\Big)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \end{split}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{split} \gamma_n^2 &= \Big(\frac{n}{n+1}\Big)^2 \Big(\frac{n^2}{n^2-1}\Big)^{n-1} \\ &= \Big(1 - \frac{1}{n+1}\Big)^2 \Big(1 + \frac{1}{(n-1)(n+1)}\Big)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\ &= e^{-\frac{1}{n+1}} \end{split}$$

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

= $\left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$
 $\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$
= $e^{-\frac{1}{n+1}}$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

= $\left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$
 $\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$
= $e^{-\frac{1}{n+1}}$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

9 The Ellipsoid Algorithm

• Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

• Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

9 The Ellipsoid Algorithm

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.

9 The Ellipsoid Algorithm

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.
- Compute the new center ĉ' and the new matrix Q' for this simplified setting.

9 The Ellipsoid Algorithm

9. Jul. 2022 195/462

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.

9 The Ellipsoid Algorithm

9. Jul. 2022 195/462

$$e^{-\frac{1}{2(n+1)}}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))}$$

9 The Ellipsoid Algorithm

9. Jul. 2022 196/462

$$e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})}$$

9 The Ellipsoid Algorithm

9. Jul. 2022 196/462

$$e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$

9 The Ellipsoid Algorithm

9. Jul. 2022 196/462

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(*L*).

How to compute the new parameters?

9 The Ellipsoid Algorithm

9. Jul. 2022 197/462

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\};\$

 $f^{-1}(H) = \{ f^{-1}(x) \mid a^T(x - c) \le 0 \}$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x-c) \le 0 \}$$
$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{T}L)y \le 0\}$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\};\$

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{T}L)y \le 0\}$

This means $\bar{a} = L^T a$.

The center \bar{c} is of course at the origin.

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

 \bar{c}'

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

 $\bar{c}' = R \cdot \hat{c}'$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$ar{c}' = R \cdot \hat{c}' = R \cdot rac{1}{n+1} e_1$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

c'

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}')$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

 $c' = f(\bar{c}') = L \cdot \bar{c}' + c$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1}L\frac{L^{T}a}{\|L^{T}a\|} + c$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$\begin{aligned} c' &= f(\bar{c}') = L \cdot \bar{c}' + c \\ &= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c \\ &= c - \frac{1}{n+1} \frac{Q a}{\sqrt{a^T Q a}} \end{aligned}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

Note that $e_1e_1^T$ is a matrix M that has $M_{11} = 1$ and all other entries equal to 0.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives $\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$ Note that $e_1 e_1'$ is a matrix of the matri

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} - \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2}-1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2}-1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

 \bar{E}'

9 The Ellipsoid Algorithm

9. Jul. 2022 201/462

 $\bar{E}' = R(\hat{E}')$

9. Jul. 2022 201/462

$$\bar{E}' = R(\hat{E}')$$

= { $R(x) \mid x^T \hat{Q}'^{-1} x \le 1$ }

$$\bar{E}' = R(\hat{E}')$$

= {R(x) | $x^T \hat{Q}'^{-1} x \le 1$ }
= { $y | (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1$ }

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q'}^{-1} x \le 1 \} \\ &= \{ \gamma \mid (R^{-1} \gamma)^T \hat{Q'}^{-1} R^{-1} \gamma \le 1 \} \\ &= \{ \gamma \mid \gamma^T (R^T)^{-1} \hat{Q'}^{-1} R^{-1} \gamma \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q'}^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1} y)^T \hat{Q'}^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^T (R^T)^{-1} \hat{Q'}^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^T (\underline{R} \hat{Q'} R^T)^{-1} y \le 1 \} \\ &= \{ y \mid y^T (\underline{R} \hat{Q'} R^T)^{-1} y \le 1 \} \end{split}$$

9. Jul. 2022 201/462

 \bar{O}'

Hence,

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$$

which means $x^T(I - R^T R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^T R = 0$.

Hence,

 $\bar{Q}' = R\hat{Q}'R^T$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$$

which means $x^T(I - R^T R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^T R = 0$.

Hence,

$$\bar{Q}' = R\hat{Q}'R^T$$
$$= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1}e_1e_1^T\right) \cdot R^T$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$$

which means $x^T(I - R^T R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^T R = 0$.

Hence,

$$\begin{split} \tilde{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \left(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \right) \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$$

which means $x^T(I - R^T R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^T R = 0$.

Ĉ

Hence,

$$\begin{split} \hat{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$$

which means $x^T(I - R^T R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^T R = 0$.

E'

9. Jul. 2022 203/462

 $E' = L(\bar{E}')$

$$E' = L(\bar{E}') = \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$E' = L(\bar{E}')$$

= {L(x) | $x^T \bar{Q}'^{-1} x \le 1$ }
= { $y | (L^{-1} y)^T \bar{Q}'^{-1} L^{-1} y \le 1$ }

9. Jul. 2022 203/462

$$E' = L(\bar{E}')$$

= {L(x) | $x^T \bar{Q}'^{-1} x \le 1$ }
= { y | $(L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1$ }

$$E' = L(\bar{E}')$$

= {L(x) | $x^T \bar{Q}'^{-1} x \le 1$ }
= { y | $(L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^T (\underline{L} \bar{Q}' L^T)^{-1} y \le 1$ }

9 The Ellipsoid Algorithm

9. Jul. 2022 203/462

Hence,

Q'

Hence,

 $Q' = L\bar{Q}'L^T$

Hence,

$$Q' = L\bar{Q}'L^T$$
$$= L \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} \frac{L^T a a^T L}{a^T Q a}\right) \cdot L^T$$

9 The Ellipsoid Algorithm

9. Jul. 2022 204/462

Hence,

$$Q' = L\bar{Q}'L^{T}$$
$$= L \cdot \frac{n^{2}}{n^{2}-1} \left(I - \frac{2}{n+1} \frac{L^{T}aa^{T}L}{a^{T}Qa}\right) \cdot L^{T}$$
$$= \frac{n^{2}}{n^{2}-1} \left(Q - \frac{2}{n+1} \frac{Qaa^{T}Q}{a^{T}Qa}\right)$$

9 The Ellipsoid Algorithm

9. Jul. 2022 204/462

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$
- 2: **output:** point $x \in K$ or "K is empty"
- 3: *Q* ← ???

4: repeat

5: **if**
$$c \in K$$
 then return c

6: else

7: choose a violated hyperplane *a*

8:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Oa}}$$

9:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qaa} \Big)$$

10: endif

11: until ???

12: return "K is empty"

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $L := 2\langle A \rangle + \langle b \rangle + 2n(1 + \log_2 n)$. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^L$.

In the following we use $\delta := 2^L$.

Proof:

We can replace *P* by $P' := \{x \mid A'x \le b; x \ge 0\}$ where $A' = \begin{bmatrix} A & -A \end{bmatrix}$. The lemma follows by applying Lemma 47, and observing that $\langle A' \rangle = 2\langle A \rangle$ and n' = 2n.

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $L := 2\langle A \rangle + \langle b \rangle + 2n(1 + \log_2 n)$. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^L$.

In the following we use $\delta := 2^L$.

Proof:

We can replace *P* by $P' := \{x \mid A'x \le b; x \ge 0\}$ where A' = [A - A]. The lemma follows by applying Lemma 47, and observing that $\langle A' \rangle = 2\langle A \rangle$ and n' = 2n.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \le b + rac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}
ight\} ,$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

9. Jul. 2022 208/462

When can we terminate?

Let $P := \{x \mid Ax \le b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \le b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

9. Jul. 2022 208/462

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + rac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}
ight\},$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

Lemma 53 P_{λ} is feasible if and only if *P* is feasible.

⇐: obvious!

9 The Ellipsoid Algorithm

9. Jul. 2022 209/462

Lemma 53 P_{λ} is feasible if and only if P is feasible.

←: obvious!

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\} .$$

P is feasible if and only if P is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_\lambda$ is bounded since P_λ and P are bounded.

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if P is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_\lambda$ is bounded since P_λ and P are bounded.

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_\lambda$ is bounded since P_λ and P are bounded.

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \overline{P} is feasible, and P_{λ} feasible if and only if \overline{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let
$$\overline{A} = \begin{bmatrix} A & -A & I_m \end{bmatrix}$$
.

 $\bar{{\it P}}_{\lambda}$ feasible implies that there is a basic feasible solution represented by

$$\boldsymbol{x}_{B} = \bar{A}_{B}^{-1}\boldsymbol{b} + \frac{1}{\lambda}\bar{A}_{B}^{-1} \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for $ar{P}$ is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Let
$$\overline{A} = \begin{bmatrix} A & -A & I_m \end{bmatrix}$$
.

 $\bar{\textit{P}}_{\lambda}$ feasible implies that there is a basic feasible solution represented by

$$\boldsymbol{x}_{B} = \bar{A}_{B}^{-1}\boldsymbol{b} + \frac{1}{\lambda}\bar{A}_{B}^{-1} \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Let
$$\overline{A} = \begin{bmatrix} A & -A & I_m \end{bmatrix}$$
.

 $\bar{{\it P}}_{\lambda}$ feasible implies that there is a basic feasible solution represented by

$$\boldsymbol{x}_{B} = \bar{A}_{B}^{-1}\boldsymbol{b} + \frac{1}{\lambda}\bar{A}_{B}^{-1} \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)} \le -1/\delta$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{A}_B^j) \leq \delta$$
 ,

where \bar{A}_B^j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

But then

$$(\bar{A}_{B}^{-1}b)_{i} + \frac{1}{\lambda}(\bar{A}_{B}^{-1}\vec{1})_{i} \leq -1/\delta + \delta/\lambda < 0$$
,

as we chose $\lambda = \delta^2 + 1$. Contradiction.

9. Jul. 2022 212/462

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)} \le -1/\delta$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{A}_B^j) \leq \delta$$
 ,

where \bar{A}_B^j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

But then

$$(\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i \le -1/\delta + \delta/\lambda < 0$$
,

as we chose $\lambda = \delta^2 + 1$. Contradiction.

9. Jul. 2022 212/462

9. Jul. 2022 213/462

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also *P*. Let *x* be feasible for *P*.

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \le r$. Then $(A(x + \vec{\ell}))_i$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \le r$. Then $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \le r$. Then $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \le r$. Then $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$ $\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\|$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \le r$. Then $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$ $\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let
$$\vec{\ell}$$
 with $\|\vec{\ell}\| \le r$. Then
 $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$
 $\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$
 $\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3}$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let
$$\vec{\ell}$$
 with $\|\vec{\ell}\| \le r$. Then
 $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$
 $\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$
 $\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let
$$\vec{\ell}$$
 with $\|\vec{\ell}\| \le r$. Then
 $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$
 $\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$
 $\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

9. Jul. 2022 214/462

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

i

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$\begin{split} i &> 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))} \right) \\ &= 2(n+1) \ln \left(n^n \delta^n \cdot \delta^{3n} \right) \end{split}$$

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$
$$= 2(n+1)\ln\left(n^n\delta^n\cdot\delta^{3n}\right)$$
$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$\begin{split} i &> 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))} \right) \\ &= 2(n+1) \ln \left(n^n \delta^n \cdot \delta^{3n} \right) \\ &= 8n(n+1) \ln(\delta) + 2(n+1)n \ln(n) \\ &= \mathcal{O}(\operatorname{poly}(n) \cdot L) \end{split}$$

Algorithm 1 ellipsoid-algorithm

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii *R* and *r*

- 2: with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x
- 3: **output:** point $x \in K$ or "K is empty"

4:
$$Q \leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$$

5: repeat

6: **if**
$$c \in K$$
 then return c

С

7: else

- 8: choose a violated hyperplane *a*
- 9:

$$\leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qaa} \right)$$

11: endif

12: **until**
$$det(Q) \le r^{2n} // i.e., det(L) \le r^n$$

13: return "K is empty"

Separation Oracle

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

• certifies that $x \in K$,

• or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius π is contained in & ,
- \otimes an initial ball $\mathcal{B}(c, \mathbb{R})$ with radius \mathcal{B} that contains \mathcal{B}_{1}
- a separation oracle for *K*.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius or is contained in 80,
- \sim an initial ball B(c,R) with radius R that contains R_{s}
- a separation oracle for K.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- \sim a guarantee that a ball of radius \sim is contained in \lesssim ,
- an initial ball (10,77) with radius (1) that contains (1)
- a separation oracle for K.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in *K* we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
 a separation oracle for K.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,

• a separation oracle for K.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $O(poly(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in *K* we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^\circ := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^\circ$ throughout the algorithm
- for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^\circ$ throughout the algorithm
- for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^\circ$ throughout the algorithm
- for $x \in P^\circ$ define

 $s_i(x) := b_i - a_i^T x$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^\circ$ throughout the algorithm
- for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the i-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^\circ$ throughout the algorithm
- for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point x; points close to the boundary have a very large penalty.

Throughout this section a_i denotes the
<i>i</i> -th row as a column vector.

Penalty Function

10 Karmarkars Algorithm

Penalty Function

10 Karmarkars Algorithm

9. Jul. 2022 220/462

Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{\mathbf{x}} := \nabla^2 \phi(\mathbf{x}) = \sum_{i=1}^m \frac{1}{s_i(\mathbf{x})^2} a_i a_i^T = A^T D_{\mathbf{x}}^2 A$$

with $D_x = \operatorname{diag}(d_x)$.

Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{\mathbf{x}} := \nabla^2 \phi(\mathbf{x}) = \sum_{i=1}^m \frac{1}{s_i(\mathbf{x})^2} a_i a_i^T = A^T D_{\mathbf{x}}^2 A$$

with $D_x = \operatorname{diag}(d_x)$.

Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{\mathbf{x}} := \nabla^2 \phi(\mathbf{x}) = \sum_{i=1}^m \frac{1}{s_i(\mathbf{x})^2} a_i a_i^T = A^T D_{\mathbf{x}}^2 A_i^T A_i^T = A^T A_i^T = A^T A_i^T A_i^T = A^T A_$$

with $D_x = \operatorname{diag}(d_x)$.

Proof for Gradient

$$\begin{split} \frac{\partial \phi(x)}{\partial x_i} &= \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right) \\ &= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right) \\ &= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right) \\ &= \sum_r \frac{1}{s_r(x)} A_{ri} \end{split}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_{r}(x)a_{r} = A^{T}d_{x}$$

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $1/s_{r}(x)^{2}$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_X = A^T D^2 A$$

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$ $u^T H_x u = \|D_x A u\|_2^2 > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $\|u\|_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$ $u^T H_x u = \|D_x A u\|_2^2 > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$ $u^T H_x u = ||D_x A u||_2^2 > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $\|u\|_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$ $u^T H_x u = ||D_x A u||_2^2 > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_{χ} is positive definite for $\chi \in P^{\circ}$

$$u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0$$
 for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Dikin Ellipsoid

 $E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \leq 1 \} = \{ y \mid ||y - x||_{H_{x}} \leq 1 \}$

Points in Ex are feasible!!!

inv_ot_x_mont_polog_this tests and the constraint_polog_this
is the constraint_polog_this tests and the constraint is the constraint

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Dikin Ellipsoid

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in *E_x* are feasible!!!

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in *E_x* are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T} (y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$
$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

 $\sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^2}{(\text{distance of } x \text{ to } i\text{-th constraint})^2}$

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in *E_x* are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

10 Karmarkars Algorithm

9. Jul. 2022 226/462

Analytic Center

 $x_{\mathrm{ac}} := \operatorname{arg\,min}_{x \in P^\circ} \phi(x)$

 $\blacktriangleright x_{ac}$ is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- x_{ac} exists and is unique iff P° is nonempty and bounded

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

```
Central Path:
Set of points \{x^*(t) \mid t > 0\} with
```

```
x^*(t) = \operatorname{argmin}_x \{ tc^T x + \phi(x) \}
```

```
• t = 0: analytic center
```

• $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

9. Jul. 2022 228/462

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

 $x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

9. Jul. 2022 228/462

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

 $x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Different Central Paths

10 Karmarkars Algorithm

9. Jul. 2022 229/462

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- Is this really true? How large a t do we need?
- How do we find corresponding point $x^*(t)$ on central path?

The Dual

primal-dual pair:

Assumptions

primal and dual problems are strictly feasible;

▶ rank(A) = n.

Note that the right LP in standard form is equal to $\max\{-b^T y \mid -A^T y = c, x \ge 0\}$. The dual of this is $\min\{c^T x \mid -Ax \ge -b\}$ (variables x are unrestricted).

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by ∇φ(x).
- In addition there is a force tc pulling us towards the optimum solution.

```
The "gravitational force" actually pulls
us in direction -\nabla \Phi(x). We are minimiz-
ing, hence, optimizing in direction -c.
```


Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

 $tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$

 $c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$ with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

 $c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$ with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

(() ~ 25.00 ~ 26.000) (statisticity dual feasible) (2002 ~ 26.000) statistication of the statistication of th

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

*z**(*t*) is strictly dual feasible: (*A^Tz** + *c* = 0; *z** > 0)
 duality gap between *x* := *x**(*t*) and *z* := *z**(*t*) is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

> $z^*(t)$ is strictly dual feasible: ($A^T z^* + c = 0$; $z^* > 0$)

• duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

> $z^*(t)$ is strictly dual feasible: ($A^T z^* + c = 0$; $z^* > 0$)

• duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

Quadratic approximation of f_t

$$f_t(x+\epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x+\epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

10 Karmarkars Algorithm

9. Jul. 2022 235/462

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

9. Jul. 2022 235/462

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

Observe that $H_{f_t}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like $tc^T x$ does not affect the Hessian). Also $\nabla f_t(x) = tc + \nabla \phi(x)$.

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

= $-H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$
= $-(A^T D_x^2 A)^{-1} (tc + A^T d_x)$

Newton Iteration:

 $x := x + \Delta x_{nt}$

Measuring Progress of Newton Step

Newton decrement:

 $\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\| \\ = \|\Delta x_{\mathsf{nt}}\|_{H_x}$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

 $-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$

λ_t(x) = 0 iff x = x*(t)
 λ_t(x) is measure of proximity of x to x*(t

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t(x)$.

Measuring Progress of Newton Step

Newton decrement:

 $\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\| \\ = \|\Delta x_{\mathsf{nt}}\|_{H_x}$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

 $-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$

λ_t(x) = 0 iff x = x*(t)
 λ_t(x) is measure of proximity of x to x*(t)

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t(x)$.

Measuring Progress of Newton Step

Newton decrement:

 $\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\| \\ = \|\Delta x_{\mathsf{nt}}\|_{H_x}$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

 $-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$

• $\lambda_t(x) = 0$ iff $x = x^*(t)$

• $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t(x)$.

Theorem 55

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\blacktriangleright \ \lambda_t(x_+) \le \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

feasibility:

► $\lambda_t(x) = \|\Delta x_{nt}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

 $\lambda_{t}(\boldsymbol{x}^{+})^{2} = \|D_{+}A \Delta x_{nt}^{+}\|^{2}$ $\leq \|D_{+}A \Delta x_{nt}^{+}\|^{2} + \|D_{+}A \Delta x_{nt}^{+} + (I - D_{+}^{-1}D)DA \Delta x_{nt}\|^{2}$ $= \|(I - D_{+}^{-1}D)DA \Delta x_{nt}\|^{2}$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

 $\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$ $\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$ $= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

 $\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$ $\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$ $= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$$

$$\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

$$= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$$

$$\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

$$= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

 $DA\Delta x_{\mathsf{nt}} = DA(x^+ - x)$ $= D(b - Ax - (b - Ax^+))$ $= D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$ $= (I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

 $DA\Delta x_{nt} = DA(x^{+} - x)$ = $D(b - Ax - (b - Ax^{+}))$ = $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$ = $(I - D^{-1}_{+}D)\vec{1}$

 $a^{T}(a+b)$ $= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$ $= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$ $= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$ $= \Delta x_{nt}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$ = 0

 $DA\Delta x_{\mathsf{nt}} = DA(x^+ - x)$ = $D(b - Ax - (b - Ax^+))$ = $D(D^{-1}\overline{1} - D^{-1}_{+}\overline{1})$ = $(I - D^{-1}_{+}D)\overline{1}$

 $DA\Delta x_{nt} = DA(x^{+} - x)$ = $D(b - Ax - (b - Ax^{+}))$ = $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$ = $(I - D^{-1}_{+}D)\vec{1}$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a + b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

 $a^{T}(a+b)$ $= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$ $= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$ $= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \overline{I} - A^{T} D \overline{I} \right)$ $= \Delta x_{nt}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$ = 0

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

 $a^{T}(a + b)$ $= \Delta x_{\text{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\text{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\text{nt}} \right)$ $= \Delta x_{\text{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\text{nt}}^{+} - A^{T} D^{2} A \Delta x_{\text{nt}} + A^{T} D_{+} D A \Delta x_{\text{nt}} \right)$ $= \Delta x_{\text{nt}}^{+T} \left(H_{+} \Delta x_{\text{nt}}^{+} - H \Delta x_{\text{nt}} + A^{T} D_{+} \overline{I} - A^{T} D \overline{I} \right)$ $= \Delta x_{\text{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$ = 0

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a + b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \overline{1} - A^{T} D \overline{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \tilde{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \tilde{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t (x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{\mathsf{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

$$\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t (x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \leq \left(\sum_i y_i^2
ight)^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

$$\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t (x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \leq \left(\sum_i y_i^2
ight)^2$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t (x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

ϵ is approximation we are aiming for

start at $t = t_0$, repeat until $m/t \le \epsilon$

• compute $x^*(\mu t)$ using Newton starting from $x^*(t)$

```
► t := µt
```

where $\mu = 1 + 1/(2\sqrt{m})$

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

 $\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$ = $(\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1}$ $B = D_{x}^{T} A$ $\leq (\mu - 1)^{2} m$ = 1/4

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

= $(\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1}$ $B = D_{x}^{T} A$
 $\leq (\mu - 1)^{2} m$
= $1/4$

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

Number of Iterations

the number of Newton iterations per outer tors. Since it is a projection maiteration is very small; in practise only 1 or 2^{1}_{1} trix ($P^{2} = P$) it can only have

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \geq \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

9. Jul. 2022 247/462

Explanation for previous slide $P = B(B^TB)^{-1}B^T$ is a symmetric real-valued matrix; it has *n* linearly independent Eigenvectors. Since it is a projection matrix ($P^2 = P$) it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 , where λ_i is Eigenvalue of *P*). The expression $\max_{i=1}^{n} \frac{v^T P v}{v^T r}$

gives the largest Eigenvalue for P. Hence, $\vec{1}^T P \vec{1} \leq \vec{1}^T \vec{1} = m$

We assume that the polytope (not just the LP) is bounded. Then $Av \leq 0$ is not possible.

For
$$x \in P^{\circ}$$
 and direction $v \neq 0$ define

$$\sigma_{X}(v) := \max_{i} \frac{a_{i}^{T} v}{s_{i}(x)}$$

 $a_i^T v$ is the change on the left hand side of the *i*-th constraint when moving in direction of v.

If $\sigma_x(v) > 1$ then for one coordinate this change is larger than the slack in the constraint at position x.

By downscaling v we can ensure to stay in the polytope.

Observation:

 $x + \alpha v \in P$ for $\alpha \in \{0, 1/\sigma_x(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

 $f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$ $\phi(x + \alpha v) - \phi(x)$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

10 Karmarkars Algorithm

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

 $\phi(x+\alpha v)-\phi(x)$

 $s_i(x+\alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$$
$$= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$$
$$= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x))$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

 $\begin{aligned} \phi(x + \alpha v) - \phi(x) &= -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x)) \\ &= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_{i} \log(1 - \alpha_i^T \alpha v/s_i(x)) \end{aligned}$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\begin{split} \phi(x + \alpha v) - \phi(x) &= -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x)) \\ &= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x)) \end{split}$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

 $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$

For
$$|x| < 1$$
, $x \le 0$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $\ge \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

$\nabla f_t(x)^T \alpha v$ **Damped Newton Method** $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$ Note that $||w|| = ||v||_{H_x}$. Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$ $= -\sum_{i} (\alpha w_i + \log(1 - \alpha w_i))$

For
$$|x| < 1$$
, $x \le 0$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $\ge \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

$\nabla f_t(x)^T \alpha v$ **Damped Newton Method** $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$ Note that $||w|| = ||v||_{H_X}$. Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$ $= -\sum_{i} (\alpha w_i + \log(1 - \alpha w_i))$ $\leq -\sum_{\alpha} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{\alpha} \frac{\alpha^2 w_i^2}{2}$ $w_i > 0$

For
$$|x| < 1$$
, $x \le 0$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $\ge \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

$\nabla f_t(x)^T \alpha v$ **Damped Newton Method** $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$ Note that $||w|| = ||v||_{H_{\chi}}$. Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$ $= -\sum_{i} (\alpha w_i + \log(1 - \alpha w_i))$ $\leq -\sum_{w>0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w>0} \frac{\alpha^2 w_i^2}{2}$ $w_i > 0$ $\leq -\sum_{w>0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right) + \frac{(\alpha \sigma)^2}{2} \sum_{w<0} \frac{w_i^2}{\sigma^2}$

For
$$|x| < 1$$
, $x \le 0$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $\ge \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

For
$$x \ge 0$$

 $\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration: In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

For
$$x \ge 0$$

 $\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration: In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

For
$$x \ge 0$$

 $\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

With $v = \Delta x_{nt}$ we have $||w||_2 = ||v||_{H_x} = \lambda_t(x)$; further recall that $\sigma = ||w||_{\infty}$; hence $\sigma \le \lambda_t(x)$.

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

With $v = \Delta x_{nt}$ we have $||w||_2 = ||v||_{H_x} = \lambda_t(x)$; further recall that $\sigma = ||w||_{\infty}$; hence $\sigma \le \lambda_t(x)$.

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma)\right)$$

With $v = \Delta x_{nt}$ we have $||w||_2 = ||v||_{H_x} = \lambda_t(x)$; further recall that $\sigma = ||w||_{\infty}$; hence $\sigma \le \lambda_t(x)$.

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

$$\begin{split} \frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \bigg(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\bigg) \\ &= \frac{\lambda_t(x)^2}{\sigma^2} \Big(\sigma - \log(1+\sigma)\Big) \end{split}$$
With $v = \Delta x_{\rm nt}$ we have $\|w\|_2 = \|v\|_{H_x} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \le \lambda_t(x)$.

The first inequality follows since the function $\frac{1}{x^2}(x - \log(1 + x))$ is monotonically decreasing.

 $\geq \lambda_t(x) - \log(1 + \lambda_t(x))$ ≥ 0.09

for $\lambda_t(x) \ge 0.5$

Centering Algorithm: Input: precision δ ; starting point *x*

- **1.** compute Δx_{nt} and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
- **3.** set $x := x + \alpha \Delta x_{nt}$ with

$$\alpha = \begin{cases} \frac{1}{1 + \sigma_x(\Delta x_{\text{nt}})} & \lambda_t \ge 1/2 \\ 1 & \text{otw.} \end{cases}$$

9. Jul. 2022 253/462

The first inequality follows since the function $\frac{1}{x^2}(x - \log(1 + x))$ is monotonically decreasing.

 $\geq \lambda_t(x) - \log(1 + \lambda_t(x))$ ≥ 0.09

for $\lambda_t(x) \ge 0.5$

Centering Algorithm:

Input: precision δ ; starting point x

- **1.** compute Δx_{nt} and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
- **3.** set $x := x + \alpha \Delta x_{nt}$ with

$$\alpha = \begin{cases} \frac{1}{1 + \sigma_x(\Delta x_{\mathsf{nt}})} & \lambda_t \ge 1/2 \\ 1 & \mathsf{otw.} \end{cases}$$

Centering

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \le \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log \log(1/\delta))$$

iterations.

This can be very, very slow...

9. Jul. 2022 254/462

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \rightarrow b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Lemma [without proof] The inverse of a matrix *M* can be represented with rational numbers that have denominators $z_{ij} = det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .Note that an entry in \hat{c} fulfills $|\hat{c}_i| \le 2^{2L}$.This holds since the slack in every constraint
at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{mL})$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

Start at x_0 .	Note that an entry in \hat{c} fulfills $ \hat{c}_i \le 2^{2L}$. This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{mL})$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

	Note that an entry in \hat{c} fulfills $ \hat{c}_i \leq 2^{2L}$.
	This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{mL})$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

	Note that an entry in \hat{c} fulfills $ \hat{c}_i \leq 2^{2L}$. This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

	Note that an entry in \hat{c} fulfills $ \hat{c}_i \leq 2^{2L}$. This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

	Note that an entry in \hat{c} fulfills $ \hat{c}_i \leq 2^{2L}$. This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

 $\begin{aligned} tc^T x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^T x_c - \phi(x_c) \\ &\leq t(c^T x_{\hat{c}} + \hat{c}^T x_c - \hat{c}^T x_{\hat{c}} - c^T x_c) \\ &\leq 4tn2^{3L} \end{aligned}$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{mL})$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

 $\begin{aligned} t \boldsymbol{c}^T \boldsymbol{x}_{\hat{\boldsymbol{c}}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{\boldsymbol{c}}}) - t \boldsymbol{c}^T \boldsymbol{x}_{\boldsymbol{c}} - \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}}) \\ &\leq t (\boldsymbol{c}^T \boldsymbol{x}_{\hat{\boldsymbol{c}}} + \hat{\boldsymbol{c}}^T \boldsymbol{x}_{\boldsymbol{c}} - \hat{\boldsymbol{c}}^T \boldsymbol{x}_{\hat{\boldsymbol{c}}} - \boldsymbol{c}^T \boldsymbol{x}_{\boldsymbol{c}}) \\ &\leq 4 t n 2^{3L} \end{aligned}$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{mL})$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T} \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) - tc^{T} \boldsymbol{x}_{c} - \boldsymbol{\phi}(\boldsymbol{x}_{c})$$

$$\leq t(c^{T} \boldsymbol{x}_{\hat{c}} + \hat{c}^{T} \boldsymbol{x}_{c} - \hat{c}^{T} \boldsymbol{x}_{\hat{c}} - c^{T} \boldsymbol{x}_{c})$$

$$\leq 4tn 2^{3t}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{O}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{O}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $ilde{\mathcal{O}}(m^3)$ time.

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \phi(\boldsymbol{x}_{\boldsymbol{c}})$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

Part III

Approximation Algorithms

9. Jul. 2022 259/462

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

We need algorithms for hard problems.

- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Definition 58

An optimization problem $P = (\mathcal{I}, \text{sol}, m, \text{goal})$ is in **NPO** if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in sol(\mathcal{I})$ can be verified in polynomial time
- *m* can be computed in polynomial time
- ▶ goal \in {min, max}

In other words: the decision problem is there a solution y with m(x, y) at most/at least z is in NP.

- x is problem instance
- y is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$R(x, y) := \max\left\{\frac{m(x, y)}{m^*(x)}, \frac{m^*(x)}{m(x, y)}\right\}$$

Definition 60 (*r***-approximation)**

An algorithm A is an r-approximation algorithm iff

$\forall x \in \mathcal{I}: R(x, A(x)) \leq r$,

and A runs in polynomial time.

Definition 61 (PTAS)

A PTAS for a problem *P* from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution \mathcal{Y} for x with

 $R(x,y) \leq 1 + \epsilon$.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 62 (FPTAS)

An FPTAS for a problem *P* from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution \mathcal{Y} for x with

$R(x,y) \leq 1 + \epsilon$.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 63 (APX – approximable)

A problem *P* from NPO is in APX if there exist a constant $r \ge 1$ and an *r*-approximation algorithm for *P*.

constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an *r*-approximation with $r \leq O(\log^{c}(|x|))$ for some constant *c*.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an *n*-approximation is trivial.

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an n-approximation is trivial.

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an *n*-approximation is trivial.

There are weird problems!

Asymmetric *k*-Center admits an $O(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric *k*-Center unless $NP \subseteq DTIME(n^{\log \log \log n})$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

and

$$\sum_{i\in I} w_i$$
 is minimized.

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

12 Integer Programs

IP-Formulation of Set Cover

min		$\sum_i w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	≥	1
	$\forall i \in \{1, \ldots, k\}$	x_i	\geq	0
	$\forall i \in \{1, \ldots, k\}$	x_i	integral	

Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

12 Integer Programs

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

max	$\sum_{e\in E} w_e x_e$			
s.t.	$\forall v \in V$	$\sum_{e:v \in e} x_e$	\leq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

12 Integer Programs

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

12 Integer Programs

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

max		$\sum_{v \in V} w_v x_v$		
s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\leq	1
	$\forall v \in V$	x_v	\in	$\{0, 1\}$

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold *K*. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most *K* such that the profit is maximized.

12 Integer Programs

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold *K*. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most *K* such that the profit is maximized.

12 Integer Programs

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

12 Integer Programs

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Relations

Maximization Problems:

Minimization Problems:

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\in	[0,1]

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^{k} w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1, \dots, k\} & x_i \in [0, 1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that 2 men 20 and 1.
- The sum contains at most /// <//>
- Therefore one of the sets that contain a must have a set in a
- This set will be selected. Hence, at is covered.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

The sum contains at most ////elements.
Therefore one of the sets that contain as must have as a line of the sets. This set will be selected. Hence, as is covered.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence, u is covered.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.

This set will be selected. Hence, u is covered.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

9. Jul. 2022 293/462

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i\in I} w_i$$

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i\in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$$

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$
$$\le f \cdot \operatorname{OPT} .$$

9. Jul. 2022 293/462

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

13.2 Rounding the Dual

9. Jul. 2022 294/462

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

9. Jul. 2022 294/462

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

$$\begin{array}{c|c}
\max & \sum_{u \in U} \mathcal{Y}_{u} \\
\text{s.t. } \forall i & \sum_{u:u \in S_{i}} \mathcal{Y}_{u} \leq w_{i} \\
\mathcal{Y}_{u} \geq 0
\end{array}$$

9. Jul. 2022 294/462

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

Lemma 69 *The resulting index set is an f-approximation.*

Proof: Every $u \in U$ is covered.

- Suppose there is a w that is not covered.
- This means $(b_{10000}, b_{1000}, b_{1000})$ for all sets (b_1) that contain (b_2, b_3)
- But then so, could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 69 *The resulting index set is an f-approximation.*

Proof: Every $u \in U$ is covered.

Suppose there is a 24 that is not covered.
This means (2000) and (2000) for all sets (2001) that contain (2000) for all sets (2001) that contrain (2001) for all sets (2001) the fact (2001) that the dual solution is optimal.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Proof:

Proof:

$$\sum_{i\in I} w_i = \sum_{i\in I} \sum_{u:u\in S_i} y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$

9. Jul. 2022 297/462

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$

9. Jul. 2022 297/462

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$
$$\leq f \cdot \operatorname{OPT}$$

9. Jul. 2022 297/462

 $I\subseteq I'$.

- Suppose that we take 57 in the first algorithm. i.e., 2 sectors This means
- Because of Complementary Stackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose Spanner

 $I \subseteq I'$.

This means I' is never better than I.

Suppose that we take S_i in the first algorithm. I.e., $i \in I$. This means $x_i = \frac{1}{2}$.

Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.

▶ Hence, the second algorithm will also choose *S*_{*i*}.

 $I \subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose *S*_{*i*}.

 $I \subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose *S*_{*i*}.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The solution is dual feasible and, hence,

where solving an optimum solution to the primal LP.

The set Contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The solution is dual feasible and, hence,

where \approx^{1} is an optimum solution to the original LP

The set 4 contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

 The set I contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

9. Jul. 2022 299/462

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Algorithm 1 PrimalDual
$1: y \leftarrow 0$ $2: I \leftarrow \emptyset$
2: $I \leftarrow \emptyset$
3: while exists $u \notin \bigcup_{i \in I} S_i$ do
4: increase dual variable y_u until constraint for some
new set S_ℓ becomes tight
5: $I \leftarrow I \cup \{\ell\}$

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Lemma 70

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \ldots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

since an optimal algorithm can cover the remaining n_ℓ elements with cost <code>OPT</code>.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

 $\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{m_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{OPT}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \leq \frac{|\hat{S}_j|\text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

13.4 Greedy

9. Jul. 2022 305/462

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

13.4 Greedy

9. Jul. 2022 305/462

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^{s} \left(\frac{1}{n_{\ell}} + \frac{1}{n_{\ell} - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

13.4 Greedy

9. Jul. 2022 305/462

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^n \frac{1}{i}$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^n \frac{1}{i}$$
$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) \quad .$$

A tight example:

13.4 Greedy

9. Jul. 2022 306/462

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

9. Jul. 2022 308/462

Pr[*u* not covered in one round]

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j)$$

 $\Pr[u \text{ not covered in one round}]$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j}$$

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

9. Jul. 2022 309/462

= $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$

= $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$$

= $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$

$$\leq \sum_i \Pr[u_i ext{ not covered after } \ell ext{ rounds}] \leq n e^{-\ell}$$
 .

$$= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \dots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 71 With high probability $O(\log n)$ rounds suffice.

$$= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \dots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 71 With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $O(\log n)$ with probability at least $1 - n^{-\alpha}$.

Proof: We have

 $\Pr[\#\mathsf{rounds} \ge (\alpha + 1) \ln n] \le n e^{-(\alpha + 1) \ln n} = n^{-\alpha} .$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

E[cost]

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\cos t] \le (\alpha + 1) \ln n \cdot \cos(LP) + (n \cdot OPT) n^{-\alpha}$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\text{cost}] \le (\alpha+1) \ln n \cdot \text{cost}(LP) + (n \cdot \text{OPT})n^{-\alpha} = \mathcal{O}(\ln n) \cdot \text{OPT}$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

E[cost] =

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] 
+ Pr[no success] \cdot E[cost | no success]
```

This means

```
E[\cos t | \text{success}] = \frac{1}{\Pr[\text{succ.}]} \Big( E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t | \text{no success}] \Big)
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

 $E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]$

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no \ success}] \cdot E[\cos t | \mathsf{no \ success}] \Big)$$

$$\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

 $E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]$

This means

E[cost | success]

 $= \frac{1}{\Pr[\mathsf{succ.}]} \left(E[\cos t] - \Pr[\mathsf{no \ success}] \cdot E[\cos t \mid \mathsf{no \ success}] \right)$ $\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$ $\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

 $E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]$

This means

E[cost | success]

 $= \frac{1}{\Pr[\mathsf{succ.}]} \left(E[\operatorname{cost}] - \Pr[\mathsf{no \ success}] \cdot E[\operatorname{cost} | \mathsf{no \ success}] \right)$ $\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\operatorname{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$ $\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$

for $n \ge 2$ and $\alpha \ge 1$.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2poly(\log n)$).

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\operatorname{poly}(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

▶ $n = 2^k - 1$

- Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$S_{\vec{y}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$$

each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
 x_i = 1/(2k-1) = 2/(n+1) is fractional solution.

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

min		L		
s.t.	\forall machines i	$\sum_{j} p_{j} \cdot x_{j,i}$	\leq	L
	$\forall jobs \ j$	$\sum_{i} x_{j,i} \ge 1$		
	$\forall i, j$	$x_{j,i}$	\in	$\{0, 1\}$

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

 $C^*_{\max} \ge \max_j p_j$

as the longest job needs to be scheduled somewhere.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

$C_{\max}^* \ge \max_j p_j$

as the longest job needs to be scheduled somewhere.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

 $C_{\max}^* \ge \max_j p_j$

as the longest job needs to be scheduled somewhere.

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

14.1 Local Search

9. Jul. 2022 319/462

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

14.1 Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

14.1 Local Search

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

 $m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$.

Hence, the length of the schedule is at most

14.1 Local Search

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14.1 Local Search

9. Jul. 2022 323/462

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14.1 Local Search

9. Jul. 2022 323/462

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14.1 Local Search

A Tight Example

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

14.2 Greedy

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

14.2 Greedy

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ► If $p_n \le C^*_{\text{max}}/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

- Hence, $p_n \ge C_{nax}^*/3$.
- This means that all jobs must have a processing time
- But then any machine in the optimum schedule can handle attended most bio jobs.

For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ► If $p_n \le C^*_{\text{max}}/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* \ .$$

- Hence, $p_n \ge C_{nax}^*/3$.
- This means that all jobs must have a processing time :
- But then any machine in the optimum schedule can handle attended in the optimum schedule can handle attended in the most two jobs.

For such instances Longest Processing-Time-First is optimal.

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^*/3$.

- But then any machine in the optimum schedule can handle attended in the optimum schedule can handle attended in the schedule can be and the schedule can be attended in the schedu

For such instances Longest Processing-Time-First is optimal.

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
 .

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
 .

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let *p_A* and *p_B* be the other job scheduled on *A* and *B*, respectively.
- ▶ p₁ + p_n ≤ p₁ + p_A and p_A + p_B ≤ p₁ + p_A, hence scheduling p₁ and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let *p_A* and *p_B* be the other job scheduled on *A* and *B*, respectively.
- ▶ p₁ + p_n ≤ p₁ + p_A and p_A + p_B ≤ p₁ + p_A, hence scheduling p₁ and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ p₁ + p_n ≤ p₁ + p_A and p_A + p_B ≤ p₁ + p_A, hence scheduling p₁ and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ p₁ + p_n ≤ p₁ + p_A and p_A + p_B ≤ p₁ + p_A, hence scheduling p₁ and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

▶ 2*m* + 1 jobs

14.2 Greedy

9. Jul. 2022 330/462

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)

- ▶ 2*m* + 1 jobs
- ▶ 2 jobs with length 2m 1, 2m 2,..., m + 1 (2m 2 jobs in total)
- 3 jobs of length m

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

15.1 Knapsack

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^{n} w_i x_i$	\leq	W
	$\forall i \in \{1, \ldots, n\}$	x_i	\in	$\{0,1\}$

15.1 Knapsack

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack1: $A(1) \leftarrow [(0,0), (p_1, w_1)]$ 2: for $j \leftarrow 2$ to n do3: $A(j) \leftarrow A(j-1)$ 4: for each $(p, w) \in A(j-1)$ do5: if $w + w_j \le W$ then6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w)\in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

Definition 74

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

Let *M* be the maximum profit of an element.

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

 $\mathcal{O}(nP')$

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_i p'_i\right)$$

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right)$$

15.1 Knapsack

9. Jul. 2022 334/462

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \ .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S}p_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S} p_i \ge \mu \sum_{i\in S} p'_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$

15.1 Knapsack

9. Jul. 2022 335/462

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$
$$\ge (1 - \epsilon) \text{OPT} .$$

The previous analysis of the scheduling algorithm gave a makespan of

$$rac{1}{m}\sum_{j
eq \ell}p_j+p_\ell$$

where ℓ is the last job to complete.

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_\ell \leq \sum_j p_j / (mk)$$

which is at most C^*_{\max}/k .

9. Jul. 2022 338/462

Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than *T*/*k*.
- Otw. it is a short job.

We first design an algorithm that works as follows:

On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m}\sum_j p_j$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

• We round all long jobs down to multiples of T/k^2 .

- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

 $T + rac{T}{k} \le \left(1 + rac{1}{k}
ight)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T \;\;.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \operatorname{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

```
We have

OPT(n_1, ..., n_{k^2}) = 0
= \begin{cases}
0 & (n_1, ..., n_{k^2}) = 0 \\
1 + \min_{(s_1, ..., s_{k^2}) \in C} OPT(n_1 - s_1, ..., n_{k^2} - s_{k^2}) & (n_1, ..., n_{k^2}) \geq 0 \\
\infty & \text{otw.}
\end{cases}
```

where C is the set of all configurations.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, ..., n_{k^2}) = \begin{cases} 0 & (n_1, ..., n_{k^2}) = 0\\ 1 + \min_{(s_1, ..., s_{k^2}) \in C} OPT(n_1 - s_1, ..., n_{k^2} - s_{k^2}) & (n_1, ..., n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76 There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

 $ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B + 1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1,...,n_A) = \begin{pmatrix} 0 & (n_1,...,n_A) = 0 \\ 1 + \min_{(s_1,...,s_A) \in C} OPT(n_1 - s_1,...,n_A - s_A) & (n_1,...,n_A) \ge 0 \\ \infty & \text{otw.} \end{pmatrix}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Given *n* items with sizes s_1, \ldots, s_n where

 $1 > s_1 \ge \cdots \ge s_n > 0$.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 77 There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

15.3 Bin Packing

9. Jul. 2022 349/462

Given *n* items with sizes s_1, \ldots, s_n where

```
1 > s_1 \ge \cdots \ge s_n > 0.
```

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 77 *There is no* ρ *-approximation for Bin Packing with* $\rho < 3/2$ *unless* P = NP.

Proof

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s_i := 2b_i/B and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Proof

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Proof

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Proof

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.

However, we will develop an APTAS for 8in Packing.

15.3 Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max{\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than 7 bins, all bins (apart from the last) must be full to at least 3 - 3.
- Hence, 2019 (2010) Where 2018 the number of a nearly-full bins.
- This gives the lemma.

15.3 Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − y) ≤ SIZE(I) where r is the number of nearly-full bins.

This gives the lemma.

15.3 Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max{\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − γ) ≤ SIZE(I) where r is the number of nearly-full bins.

```
This gives the lemma.
```


Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max{\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − γ) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

15.3 Bin Packing

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;

Round items in the remaining groups to the size of the largest item in the group.

15.3 Bin Packing

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

15.3 Bin Packing

15.3 Bin Packing

15.3 Bin Packing

15.3 Bin Packing

Proof 1:

- Any bin packing for / gives a bin packing for // as follows.
- Pack the items of group 2, where in the packing for 2 the items for group 2 have been packed;
- Pack the items of groups 3, where in the packing for 3 the items for group 3 have been packed;

15.3 Bin Packing

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Proof 1:

- Any bin packing for *I* gives a bin packing for *I'* as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Proof 1:

. . .

- Any bin packing for *I* gives a bin packing for *I'* as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

15.3 Bin Packing

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

15.3 Bin Packing

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$.

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$.

15.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + O(log^2(SIZE(I)))$.

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$.

15.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

```
OPT(I) + O(log^2(SIZE(I))).
```

Note that this is usually better than a guarantee of

```
(1+\epsilon) \operatorname{OPT}(I) + 1 .
```


15.4 Advanced Rounding for Bin Packing

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- \blacktriangleright s_2 is second largest size and b_2 number of pieces of size s_2 ;
 - s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s₂ is second largest size and b₂ number of pieces of size s₂;
 ...
- s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- ▶ *s*₂ is second largest size and *b*₂ number of pieces of size *s*₂;

 s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- ▶ s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...

 s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- ▶ s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_i t_i \cdot s_i \leq 1 \; .$

We call a vector that fulfills the above constraint a configuration.

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_i t_i \cdot s_i \le 1 \; .$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

15.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

15.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

15.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

$$\begin{array}{c|cccc} \min & & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & & x_j & \text{integral} \end{array}$$

15.4 Advanced Rounding for Bin Packing

How to solve this LP?

later...

We can assume that each item has size at least 1/SIZE(I).

Sort items according to size (monotonically decreasing).

- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

Lemma 82 The number of different sizes in I' is at most SIZE(I)/2.

 Each group that survives (recall that co-and co-are deleted) has total size at least 2.
 Hence, the number of surviving groups is at most 90% 0.22.
 All items in a group have the same size in 2.

The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that G₁ and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that G₁ and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that G₁ and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- ► All items in a group have the same size in *I*′.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in Go and Go is at most 0 as a group has total size at most 0.
- Consider a group (i) that has strictly more items than (i) is a first of the strictly more items than (i) is a first

- since the average piece size is only d/mar
- Summing over all 1 that have some sign gives a bound of at most

 - (note that $0_2 = 5020(0)$ since we assume that the size of each item is at least 0.05020(0)).

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1}.
 It discards n_i n_{i-1} pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all i that have n_i > n_{i-1} gives a bound of at most

 n_{r-1}/3

$$\sum_{i=1}^{S} \frac{5}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .

• It discards $n_i - n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all i that have n_i > n_{i-1} gives a bound of at most

 n_{r-1/2}

$$\sum_{i=1}^{N} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all *i* that have $n_i > n_{i-1}$ gives a bound of at most $\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le O(\log(\text{SIZE}(I))) .$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all *i* that have $n_i > n_{i-1}$ gives a bound of at most $n_{r-1}^{r-1} = 3$

$$\sum_{j=1}^{S} \frac{s}{j} \leq \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

Algorithm 1 BinPack

- 1: if SIZE(I) < 10 then
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $O(\log(SIZE(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

- Each piece surviving in C can be mapped to a piece in Cofino lesser size. Hence, OPEDUC COPEDUC
- $|x_{ij}| \approx |x_{ij}|$ is feasible solution for $|i_{ij}|$ (even integral).
- $|x_1 |x_2|$ is feasible solution for b_{22}

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in *I*² are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in *I*₂ are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\mathrm{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\mathrm{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mbox{OPT}_{\mbox{LP}}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in *I*₂ are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mbox{OPT}_{\mbox{LP}}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

configuration LP for () is at most the number of constraints, which is the number of different sizes (< 30202020). The total size of items in () can be at most ()(2) () () which is at most the number of non-zero entries in the solution to the configuration LP.

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- The total size of items in I₂ can be at most ∑_{j=1}^N x_j − [x_j] which is at most the number of non-zero entries in the solution to the configuration LP.

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ► The total size of items in I₂ can be at most ∑_{j=1}^N x_j ⌊x_j⌋ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

15.4 Advanced Rounding for Bin Packing

9. Jul. 2022 373/462

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

15.4 Advanced Rounding for Bin Packing

9. Jul. 2022 373/462

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

$$\begin{array}{ll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} \quad \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} \quad y_i \geq 0 \end{array}$$

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, ..., T_{jm})$ that is feasible, i.e.,

and has a large profit

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing

9. Jul. 2022 374/462

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \dots, T_{jm})$ that

```
is feasible, i.e.,
```

$$\sum_{i=1}^m T_{ji}\cdot {\mathcal Y}_i \le 1$$
 ,

and has a large profit

 $\sum_{i=1}^{m} T_{ji} \gamma_i > 1$

But this is the Knapsack problem.

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot {\mathcal Y}_i \le 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

```
is feasible, i.e.,
```

$$\sum_{i=1}^m T_{ji}\cdot {\mathcal Y}_i \le 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} \mathcal{Y}_i > 1$$

But this is the Knapsack problem.

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual

 $\begin{array}{|c|c|c|c|c|} \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i &\leq 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i &\geq 0 \end{array}$

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual′

$$\begin{array}{|c|c|c|c|c|} \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual′

$$\begin{array}{|c|c|c|c|c|} \hline \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

min		$(1+\epsilon')\sum_{j=1}^N x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$	x_j	\geq	0

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing a certify that the solution is feasible for 19001.
- Suppose that we drop all unused constraints in 00040. We will compute the same solution feasible for 000000
- Let DUAL be DUAL without unused constraints.
- The dual to 01060 is 0100600 where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL is at most (1996) 0001.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.

• The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.

We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

 $(1 + \epsilon') \text{OPT}_{\text{LP}}(I) + \mathcal{O}(\log^2(\text{SIZE}(I)))$

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

15.4 Advanced Rounding for Bin Packing

9. Jul. 2022 377/462 This gives that overall we need at most

```
(1 + \epsilon')OPT<sub>LP</sub>(I) + O(\log^2(SIZE(I)))
```

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT

9. Jul. 2022 378/462

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Terminology:

• A variable x_i and its negation \bar{x}_i are called literals.

- Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_i is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_i is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_i is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

 $W = \sum_{j} w_{j} X_{j}$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

E[W]

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$
$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$
 $\geq \frac{1}{2} \operatorname{OPT}$

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 84 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$f(\lambda s + (1-\lambda) r) \geq \lambda f(s) + (1-\lambda) f(r)$

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda)$$

for $\lambda \in [0, 1]$.

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

> $f(\lambda) = f((1 - \lambda)0 + \lambda 1)$ $\geq (1 - \lambda)f(0) + \lambda f(1)$ $= a + \lambda b$

for $\lambda \in [0,1]$.

16.1 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

16.1 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

 $\Pr[C_j \text{ not satisfied}]$

 $\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - \gamma_i) \prod_{i \in N_j} \gamma_i$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$
$$\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} .$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^\ell$ is concave. Hence,

 $\Pr[C_j \text{ satisfied}]$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

$$f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$$
 for $z \in [0,1]$. Therefore, f is concave.

E[W]

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$
$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$$

MAXSAT: The better of two

Theorem 87

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

 $E[\max\{W_1, W_2\}]$


```
E[\max\{W_1, W_2\}] \\ \ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2]
```


$$E[\max\{W_1, W_2\}] \\ \ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ \ge \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

 $1 - 4^{-x} \le f(x) \le 4^{x-1}$

Theorem 88

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

 $1 - 4^{-x} \le f(x) \le 4^{x-1}$

Theorem 88

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

9. Jul. 2022 395/462

$\Pr[C_j \text{ not satisfied}]$

$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$

16.1 MAXSAT

9. Jul. 2022 396/462

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$

9. Jul. 2022 396/462

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$
$$\leq 4^{-z_j}$$

 $\Pr[C_j \text{ satisfied}]$

 $\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

E[W]

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

 $E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}]$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}.$

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i \in P_i} \mathcal{Y}_i + \sum_{i \in N_i} (1 - \mathcal{Y}_i)$	\geq	z_j
	∀i	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	Z_j	\leq	1

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- ▶ we can set y₁ = y₂ = 1/2 in the LP; this allows to set z₁ = z₂ = z₃ = z₄ = 1
- hence, the LP has value 4.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}.$

$$\begin{array}{|c|c|c|c|c|} \max & & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & & y_{i} & \in & \{0, 1\} \\ & \forall j & & z_{j} & \leq & 1 \end{array}$$

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.

MaxCut

MaxCut

Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Semidefinite Programming

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

Note that wlog. we can assume that all variables appear in this matrix. Suppose we have a non-negative scalar z and want to express something like $\sum_{ii} a_{ijk} x_{ij} + z = b_k$

where x_{ij} are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell\ell}$, and additionally introduce constraints $x_{\ell r} = 0$ and $x_{r\ell} = 0$.

Vector Programming

$$\begin{array}{lll} \max / \min & \sum_{i,j} c_{ij}(v_i^t v_j) \\ \text{s.t.} & \forall k & \sum_{i,j,k} a_{ijk}(v_i^t v_j) \\ & v_i \in \mathbb{R}^n \end{array}$$

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$\begin{array}{c|c} \max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j) \\ \forall i & y_i \in \{-1,1\} \end{array}$$

This is exactly MaxCut!

16.2 MAXCUT

9. Jul. 2022 404/462

Semidefinite Relaxation

max		$\frac{1}{2}\sum_{i,j}w_{ij}(1-v_i^t v_j)$		
	$\forall i$	$v_i^t v_i$	=	1
	$\forall i$	v_i	\in	\mathbb{R}^{n}

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

- Choose a random vector r such that r/||r|| is uniformly distributed on the unit sphere.
- If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, \dots, x_n)]$$

= $\frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot \dots \cdot e^{x_n^2/2} dx_1 \cdot \dots \cdot dx_n$
= $\frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \cdot \dots \cdot dx_n$

Hence the probability for a point only depends on its distance to the origin.

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, \dots, x_n)]$$

= $\frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot \dots \cdot e^{x_n^2/2} dx_1 \cdot \dots \cdot dx_n$
= $\frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \cdot \dots \cdot dx_n$

Hence the probability for a point only depends on its distance to the origin.

Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

Corollary

If we project r onto a hyperplane its normalized projection (r'/||r'||) is uniformly distributed on the unit circle within the hyperplane.

- if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- this happens with probability θ/π

contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

(expected) contribution of edge (i, j) to the rounded instance w_{ij} arccos(v^t_iv_j)/π

ratio is at most

 $\min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi (1-x)} \ge 0.878$

16.2 MAXCUT

• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

 (expected) contribution of edge (*i*, *j*) to the rounded instance w_{ij} arccos(v^t_iv_j)/π

ratio is at most

 $\min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi (1-x)} \ge 0.878$

16.2 MAXCUT

contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

- (expected) contribution of edge (*i*, *j*) to the rounded instance w_{ij} arccos(v^t_iv_j)/π
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

16.2 MAXCUT

16.2 MAXCUT

16.2 MAXCUT

Theorem 91

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

 $\alpha > \min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi(1-x)}$

unless P = NP.

16.2 MAXCUT

Primal Relaxation:

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\geq	0

Dual Formulation:

 $\begin{array}{ll} \max & \sum_{u \in U} y_u \\ \text{s.t.} \quad \forall i \in \{1, \dots, k\} \quad \sum_{u:u \in S_i} y_u \leq w_i \\ y_u \geq 0 \end{array}$

17.1 Primal Dual Revisited

Primal Relaxation:

Dual Formulation:

$$\begin{array}{c|cccc} \max & \sum_{u \in U} \mathcal{Y}_{u} \\ \text{s.t.} & \forall i \in \{1, \dots, k\} & \sum_{u: u \in S_{i}} \mathcal{Y}_{u} & \leq w_{i} \\ & & \mathcal{Y}_{u} & \geq & 0 \end{array}$$

Algorithm:

Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).

While x not feasible

- Identify an element of that is not covered in current primal integral solution.
- Increase dual variable (c) until a dual constraint becomes tight (maybe increase by 0).
- If this is the constraint for set 5, set 5, set 5, set (add this set to your solution).

Algorithm:

Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).

- While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Algorithm:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Algorithm:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Algorithm:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Analysis:

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

 $\sum_{j} w_j x_j$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e}$$

17.1 Primal Dual Revisited

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

17.1 Primal Dual Revisited

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$
$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

Suppose we have a primal/dual pair

and solutions that fulfill approximate slackness conditions:

$$x_j > 0 \Rightarrow \sum_i a_{ij} y_i \ge \frac{1}{\alpha} c_j$$
$$y_i > 0 \Rightarrow \sum_j a_{ij} x_j \le \beta b_i$$

17.1 Primal Dual Revisited

$$\frac{\sum_{j} c_{j} x_{j}}{\uparrow} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\uparrow$$
primal cost

$$\sum_{j} c_{j} x_{j} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\uparrow$$
primal cost
$$\neq \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\frac{\sum_{j} c_{j} x_{j}}{\uparrow} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\stackrel{\uparrow}{\text{primal cost}} \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}$$

$$\sum_{j} c_{j} x_{j} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\xrightarrow{\text{primal cost}} \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}$$

$$\xrightarrow{\uparrow}$$

$$\text{dual objective}$$

Feedback Vertex Set for Undirected Graphs

• Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.

Feedback Vertex Set for Undirected Graphs

- Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

• Each vertex can be viewed as a set that contains some cycles.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

Let $\mathbb C$ denote the set of all cycles (where a cycle is identified by its set of vertices)

17.2 Feedback Vertex Set for Undirected Graphs

Let $\mathbb C$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{array}{|c|c|c|c|} \min & & \sum_{v} w_{v} x_{v} \\ \text{s.t.} & \forall C \in \mathfrak{C} & \sum_{v \in C} x_{v} \geq 1 \\ & \forall v & x_{v} \geq 0 \end{array}$$

Dual Formulation:

17.2 Feedback Vertex Set for Undirected Graphs

Start with x = 0 and y = 0

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

 $\sum_{v} w_{v} x_{v}$

17.2 Feedback Vertex Set for Undirected Graphs

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$

17.2 Feedback Vertex Set for Undirected Graphs

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

where S is the set of vertices we choose.

17.2 Feedback Vertex Set for Undirected Graphs

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

17.2 Feedback Vertex Set for Undirected Graphs

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algorithm 1 FeedbackVertexSet

- 1: $\mathcal{Y} \leftarrow 0$
- 2: *x* ← 0
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$

5:
$$x_v = 1$$

- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from G

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

 $\mathcal{Y}_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$.

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

The Dual:

max		$\sum_{S} \gamma_{S}$		
s.t.	$\forall e \in E$	$\sum_{S:e\in\delta(S)} \mathcal{Y}_S$	\leq	c(e)
	$\forall S \in S$	$\mathcal{Y}S$	\geq	0

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

17.3 Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

Algorithm 1 PrimalDualShortestPath

- 1: $y \leftarrow 0$
- 2: $F \leftarrow \emptyset$
- 3: while there is no s-t path in (V, F) do
- 4: Let *C* be the connected component of (*V*,*F*) containing *s*
- 5: Increase γ_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} \gamma_S = c(e')$.

$$F \leftarrow F \cup \{e'\}$$

7: Let P be an s-t path in (V, F)

8: return P

Lemma 93 At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (30, 4) that contains (call this component () and add some edge from (30, 5) to ().
- Since, at most one end-point of the new edge is in 12 the edge cannot close a cycle.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- ► In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- ► In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} \mathcal{Y}_S$$

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} \gamma_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot \gamma_S .$$

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S .$$

If we can show that $\gamma_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

$$\begin{array}{cccc} \max & \sum_{S: \exists i \text{ s.t. } S \in S_i} \mathcal{Y}S \\ \text{s.t.} & \forall e \in E & \sum_{S:e \in \delta(S)} \mathcal{Y}S &\leq c(e) \\ & & \mathcal{Y}S &\geq 0 \end{array}$$

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorithm 1 FirstTry 1: $\gamma \leftarrow 0$ 2: $F \leftarrow \emptyset$ 3: while not all s_i - t_i pairs connected in F do Let C be some connected component of (V, F) such 4: that $|C \cap \{s_i, t_i\}| = 1$ for some *i*. 5: Increase γ_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} \mathcal{Y}_S = C_{e'}$ 6: $F \leftarrow F \cup \{e'\}$ 7: return $\bigcup_i P_i$

17.4 Steiner Forest

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

However, this is not true:

Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |\delta(S) \cap F| \cdot \gamma_S .$$

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.
- $\gamma_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

Algorithm 1 SecondTry

1:
$$y \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$
2: while not all $s_i \cdot t_i$ pairs connected in F do
3: $\ell \leftarrow \ell + 1$
4: Let \mathbb{C} be set of all connected components C of (V, F)
such that $|C \cap \{s_i, t_i\}| = 1$ for some i .
5: Increase y_C for all $C \in \mathbb{C}$ uniformly until for some edge
 $e_\ell \in \delta(C'), C' \in \mathbb{C}$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$
6: $F \leftarrow F \cup \{e_\ell\}$
7: $F' \leftarrow F$
8: for $k \leftarrow \ell$ downto 1 do // reverse deletion
9: if $F' - e_k$ is feasible solution then
0: remove e_k from F'

11: **return** *F*'

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

17.4 Steiner Forest

Lemma 94 For any *C* in any iteration of the algorithm

 $\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

 $\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S:e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the 1-th iteration the increase of the left-hand side is

and the increase of the right hand side is 2010.

 Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \mathcal{Y}_S = \sum_{S} |F' \cap \delta(S)| \cdot \gamma_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the 1-th iteration the increase of the left-hand side is

and the increase of the right hand side is 2010.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the 1-th iteration the increase of the left-hand side is

and the increase of the right hand side is 2010.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the oth iteration the increase of the left-hand side is

and the increase of the right hand side is 2010.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |F' \cap \delta(S)| \cdot \gamma_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

 $\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$

and the increase of the right hand side is $2\epsilon |C|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

For any set of connected components $\ensuremath{\mathbb{C}}$ in any iteration of the algorithm

- At any point during the algorithm the set of edges forms a forest (why?).
- For iteration ... Let β_1 be the set of edges in β at the beginning of the iteration.
- $\geq \operatorname{Let} H = F' F_{0}.$
- All edges in () are necessary for the solution.

For any set of connected components $\mathbb C$ in any iteration of the algorithm

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. Let F_i be the set of edges in F at the beginning of the iteration.
- Let $H = F' F_i$.
- ▶ All edges in *H* are necessary for the solution.

For any set of connected components $\ensuremath{\mathbb{C}}$ in any iteration of the algorithm

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. Let F_i be the set of edges in F at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in H are necessary for the solution.

For any set of connected components $\mathbb C$ in any iteration of the algorithm

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. Let F_i be the set of edges in F at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in H are necessary for the solution.

For any set of connected components $\mathbb C$ in any iteration of the algorithm

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. Let F_i be the set of edges in F at the beginning of the iteration.
- Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

Contract all edges in F_i into single vertices V'.

- ▶ We can consider the forest *H* on the set of vertices *V*′.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{\nu \in R} \deg(\nu) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

Then

 $\sum_{v \in R} \deg(v)$

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B|$$

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

Every blue vertex with non-zero degree must have degree at least two.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

Shortest Path

$$\begin{array}{rll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S \quad \sum_{e \in \delta(S)} x_{e} \geq 1 \\ & \forall e \in E \quad x_{e} \in \{0,1\} \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

18 Cuts & Metrics

Shortest Path

$$\begin{array}{|c|c|c|c|} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S \quad \sum_{e \in \delta(S)} x_{e} \geq 1 \\ & \forall e \in E \quad x_{e} \geq 0 \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

18 Cuts & Metrics

Shortest Path

$$\begin{array}{|c|c|c|c|} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S \quad \sum_{e \in \delta(S)} x_{e} \geq 1 \\ & \forall e \in E \quad x_{e} \geq 0 \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

18 Cuts & Metrics

Minimum Cut

\mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts & Metrics

9. Jul. 2022 450/462

Minimum Cut

$$\begin{array}{c|ccc} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} \geq 1 \\ & \forall e \in E & x_{e} \geq 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts & Metrics

Minimum Cut

$$\begin{array}{|c|c|c|c|}\hline \min & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} \geq 1 \\ & \forall e \in E & x_{e} \geq 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts & Metrics

Minimum Cut

$$\begin{array}{c|ccc} \min & \sum_{e} c(e) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} \ell_{e} \geq 1 \\ & \forall e \in E & \ell_{e} \geq 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

$$\begin{array}{c|ccc} \max & & \sum_{P} f_{P} \\ \text{s.t.} & \forall e \in E & \sum_{P:e \in P} f_{P} & \leq & c(e) \\ & \forall P \in \mathcal{P} & f_{P} & \geq & 0 \end{array}$$

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between *s* and *t*.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between *s* and *t*.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have d(u, v) = ℓ_e for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have d(u, v) = ℓ_e for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally:

 $B = \{ v \in V \mid d(s, v) \le r \}$

```
For 0 \le r < 1, B(s, r) is an s-t-cut.
```

Which value of r should we choose? choose randomly!!!

Formally: choose r u.a.r. (uniformly at random) from interval [0, 1)

Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally:

 $B = \{ v \in V \mid d(s, v) \le r \}$

For $0 \le r < 1$, B(s, r) is an *s*-*t*-cut.

Which value of *r* should we choose? choose randomly!!!

Formally: choose r u.a.r. (uniformly at random) from interval [0, 1)

Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally:

 $B = \{ v \in V \mid d(s, v) \le r \}$

For $0 \le r < 1$, B(s, r) is an *s*-*t*-cut.

Which value of *r* should we choose? choose randomly!!!

Formally: choose r u.a.r. (uniformly at random) from interval [0,1)

Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally:

 $B = \{ v \in V \mid d(s, v) \le r \}$

For $0 \le r < 1$, B(s, r) is an *s*-*t*-cut.

Which value of *r* should we choose? choose randomly!!!

Formally: choose r u.a.r. (uniformly at random) from interval [0, 1)

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

9. Jul. 2022 453/462

 $\overset{\bigcirc}{t}$

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

18 Cuts & Metrics

▶ asssume wlog. $d(s, u) \le d(s, v)$

Pr[*e* is cut]

18 Cuts & Metrics

▶ asssume wlog. $d(s, u) \le d(s, v)$

 $\Pr[e \text{ is } \operatorname{cut}] = \Pr[r \in [d(s, u), d(s, v))]$

18 Cuts & Metrics

▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$

18 Cuts & Metrics

▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$
$$\le \ell_e$$

18 Cuts & Metrics

What is the expected size of a cut?

$$E[\text{size of cut}] = E[\sum_{e} c(e) \Pr[e \text{ is cut}]]$$
$$\leq \sum_{e} c(e) \ell_{e}$$

On the other hand:

 $\sum_{e} c(e) \ell_{e} \leq \text{size of mincut}$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

What is the expected size of a cut?

$$E[\text{size of cut}] = E[\sum_{e} c(e) \Pr[e \text{ is cut}]]$$
$$\leq \sum_{e} c(e) \ell_{e}$$

On the other hand:

$$\sum_{e} c(e) \ell_{e} \leq \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

What is the expected size of a cut?

$$E[\text{size of cut}] = E[\sum_{e} c(e) \Pr[e \text{ is cut}]]$$
$$\leq \sum_{e} c(e) \ell_{e}$$

On the other hand:

$$\sum_{e} c(e) \ell_{e} \leq \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a capacity function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G = (V, E \setminus F)$.

Here P_i contains all path P between s_i and t_i .

18 Cuts & Metrics

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a capacity function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G = (V, E \setminus F)$.

Here \mathcal{P}_i contains all path P between s_i and t_i .

18 Cuts & Metrics

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a capacity function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G = (V, E \setminus F)$.

Here \mathcal{P}_i contains all path P between s_i and t_i .

Re-using the analysis for the single-commodity case is difficult.

$\Pr[e \text{ is cut}] \leq ?$

▶ If for some *R* the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.

However, this cannot be guaranteed.

18 Cuts & Metrics

Re-using the analysis for the single-commodity case is difficult.

$\Pr[e \text{ is cut}] \leq ?$

▶ If for some *R* the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.

However, this cannot be guaranteed.

Re-using the analysis for the single-commodity case is difficult.

 $\Pr[e \text{ is cut}] \leq ?$

- ▶ If for some *R* the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- However, this cannot be guaranteed.

Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.

- Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ.
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing(s_i, p)1: z \leftarrow 02: repeat3: flip a coin (\Pr[heads] = p)4: z \leftarrow z + 15: until heads6: return B(s_i, z)
```


- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ.
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing(s_i, p)1: z \leftarrow 02: repeat3: flip a coin (\Pr[heads] = p)4: z \leftarrow z + 15: until heads6: return B(s_i, z)
```


- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ.
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing(s_i, p)1: z \leftarrow 02: repeat3: flip a coin (Pr[heads] = p)4: z \leftarrow z + 15: until heads6: return B(s_i, z)
```


- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ.
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing(s_i, p)1: z \leftarrow 02: repeat3: flip a coin (Pr[heads] = p)4: z \leftarrow z + 15: until heads6: return B(s_i, z)
```


- 1: while $\exists s_i t_i$ pair in G' do
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3:
$$G' = G' \setminus C // \text{ cuts edges leaving } C$$

4: **return** *B*(*s*_{*i*}, *z*)

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- 1: while $\exists s_i \cdot t_i$ pair in G' do
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3:
$$G' = G' \setminus C // \text{ cuts edges leaving } C$$

4: **return** *B*(*s*_{*i*}, *z*)

probability of cutting an edge is only p

- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- 1: while $\exists s_i t_i$ pair in G' do
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3:
$$G' = G' \setminus C // \text{ cuts edges leaving } C$$

4: **return** *B*(*s*_{*i*}, *z*)

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- 1: while $\exists s_i t_i$ pair in G' do
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3:
$$G' = G' \setminus C // \text{ cuts edges leaving } C$$

4: **return** *B*(*s*_{*i*}, *z*)

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- 1: while $\exists s_i t_i$ pair in G' do
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3:
$$G' = G' \setminus C // \text{ cuts edges leaving } C$$

```
4: return B(s<sub>i</sub>, z)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem: We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Problem: We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius $1/2 \ \mbox{we are in}$ good shape.

• choose $p = 6 \ln k \cdot \delta$

• we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.

we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not successful}] \le (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \le e^{-\frac{p}{2\delta}} \le \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

18 Cuts & Metrics

• choose $p = 6 \ln k \cdot \delta$

• we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.

we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not successful}] \le (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \le e^{-\frac{p}{2\delta}} \le \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

18 Cuts & Metrics

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not successful}] \le (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \le e^{-\frac{p}{2\delta}} \le \frac{1}{k^3}$$

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not successful}] \le (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p} \right)^{\frac{p}{2\delta}} \le e^{-\frac{p}{2\delta}} \le \frac{1}{k^3}$$

$$\Pr[\exists i \text{ that is not successful}] \le \frac{1}{k^2}$$

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

$$E[cutsize | succ.] = \frac{E[cutsize] - Pr[no succ.] \cdot E[cutsize | no succ.]}{Pr[success]}$$
$$\leq \frac{E[cutsize]}{Pr[success]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot OPT \leq 8 \ln k \cdot OPT$$

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

$$\begin{split} \text{E}[\text{cutsize} \mid \text{succ.}] &= \frac{\text{E}[\text{cutsize}] - \Pr[\text{no succ.}] \cdot \text{E}[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]} \\ &\leq \frac{\text{E}[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

E[cutsize] = Pr[success] · E[cutsize | success] + Pr[no success] · E[cutsize | no success]

$$\begin{split} \text{E}[\text{cutsize} \mid \text{succ.}] &= \frac{\text{E}[\text{cutsize}] - \Pr[\text{no succ.}] \cdot \text{E}[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]} \\ &\leq \frac{\text{E}[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume $k \ge 2$.

18 Cuts & Metrics

$$\begin{split} E[\texttt{cutsize}] &= \Pr[\texttt{success}] \cdot E[\texttt{cutsize} \mid \texttt{success}] \\ &+ \Pr[\texttt{no success}] \cdot E[\texttt{cutsize} \mid \texttt{no success}] \end{split}$$

$$\begin{split} \text{E}[\text{cutsize} \mid \text{succ.}] &= \frac{\text{E}[\text{cutsize}] - \Pr[\text{no succ.}] \cdot \text{E}[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]} \\ &\leq \frac{\text{E}[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume $k \ge 2$.

If we are not successful we simply perform a trivial *k*-approximation.

This only increases the expected cost by at most $\frac{1}{k^2} \cdot k\text{OPT} \leq \text{OPT}/k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot \text{OPT}$ in expectation.

