Part III

Approximation Algorithms

There are many practically important optimization problems that are NP-hard.

There are many practically important optimization problems that are NP-hard.

What can we do?

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α-approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Why approximation algorithms?

Why approximation algorithms?

- We need algorithms for hard problems.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 58

An optimization problem $P=(\mathcal{I}, \mathrm{sol}, m$, goal $)$ is in NPO if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in \operatorname{sol}(\mathcal{I})$ can be verified in polynomial time
- m can be computed in polynomial time
- goal $\in\{\min , \max \}$

In other words: the decision problem is there a solution y with $m(x, y)$ at most/at least z is in NP.

- x is problem instance
- y is candidate solution
- $m^{*}(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$
R(x, y):=\max \left\{\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right\}
$$

Definition 60 (r-approximation)

An algorithm A is an r-approximation algorithm iff

$$
\forall x \in \mathcal{I}: R(x, A(x)) \leq r,
$$

and A runs in polynomial time.

Definition 61 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon
$$

The running time is polynomial in $|x|$.
approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 62 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon
$$

The running time is polynomial in $|x|$ and $1 / \epsilon$.
approximation with arbitrary good factor... fast!

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 63 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.
constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph $G=(V, E)$; partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.
MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}\left(\log ^{c}(|x|)\right)$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

There are really difficult problems!

Theorem 64
For any constant $\epsilon>0$ there does not exist an
$\Omega\left(n^{1-\epsilon}\right)$-approximation algorithm for the maximum clique problem on a given graph G with n nodes unless $\mathrm{P}=\mathrm{NP}$.

There are really difficult problems!

Theorem 64
For any constant $\epsilon>0$ there does not exist an
$\Omega\left(n^{1-\epsilon}\right)$-approximation algorithm for the maximum clique problem on a given graph G with n nodes unless $\mathrm{P}=\mathrm{NP}$.

Note that an n-approximation is trivial.

There are weird problems!
Asymmetric k-Center admits an $\mathcal{O}\left(\log ^{*} n\right)$-approximation.
There is no $o\left(\log ^{*} n\right)$-approximation to Asymmetric k-Center unless $N P \subseteq D T I M E\left(n^{\log \log \log n}\right)$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 65
An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 65
An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_{1}, \ldots, S_{k} \subseteq U$, where the i-th subset S_{i} has weight/cost w_{i}. Find a collection $I \subseteq\{1, \ldots, k\}$ such that

$$
\forall u \in U \exists i \in I: u \in S_{i} \text { (every element is covered) }
$$

and

$$
\sum_{i \in I} w_{i} \text { is minimized. }
$$

Set Cover

Set Cover

Harald Räcke

Set Cover

Harald Räcke

Set Cover

Set Cover

Harald Räcke

Set Cover

Harald Räcke

Set Cover

Harald Räcke

IP-Formulation of Set Cover

\min		$\sum_{i} w_{i} x_{i}$		
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i}$	\geq	1
	$\forall i \in\{1, \ldots, k\}$	x_{i}	\geq	0
	$\forall i \in\{1, \ldots, k\}$	x_{i}	integral	

Vertex Cover

Given a graph $G=(V, E)$ and a weight w_{v} for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

| min | | $\sum_{v \in V} w_{v} x_{v}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall e=(i, j) \in E$ | $x_{i}+x_{j}$ | ≥ 1 |
| | $\forall v \in V$ | x_{v} | $\in\{0,1\}$ |

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

\max	$\sum_{e \in E} w_{e} x_{e}$		
s.t.	$\forall v \in V$	$\sum_{e: v \in e} x_{e} \leq 1$	
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

\[

\]

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i}$	$\leq K$
	x_{i}	$\in\{0,1\}$	

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Relations

Maximization Problems:

Minimization Problems:

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$
\begin{array}{|crrll|}
\hline \min & & \sum_{i=1}^{k} w_{i} x_{i} & \\
\text { s.t. } & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \in[0,1]
\end{array}
$$

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$
\begin{array}{|crrl}
\hline \min & & \sum_{i=1}^{k} w_{i} x_{i} & \\
\mathrm{s.t.} & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \in[0,1] \\
\hline
\end{array}
$$

Let f_{u} be the number of sets that the element u is contained in (the frequency of u). Let $f=\max _{u}\left\{f_{u}\right\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_{i}-values with $x_{i} \geq \frac{1}{f}$ to 1 . Set all other x_{i}-values to 0 .

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\sum_{i \in I} w_{i}
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\sum_{i \in I} w_{i} \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right)
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x)
\end{aligned}
$$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot$ OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x) \\
& \leq f \cdot \text { OPT }
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$
\begin{array}{cl}
\min & \sum_{i \in I} w_{i} x_{i} \\
\text { s.t. } \forall u & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& x_{i} \geq 0
\end{array}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

\min	$\sum_{i \in I} w_{i} x_{i}$
s.t. $\forall u$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$
	$x_{i} \geq 0$

Dual:

\max	$\sum_{u \in U} y_{u}$	
s.t. $\forall i$	$\sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$
y_{u}	≥ 0	

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$
\sum_{u: u \in S_{i}} y_{u}=w_{i}
$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.
- But then y_{u} could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Proof:

$$
\sum_{i \in I} w_{i}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\sum_{i \in I} w_{i}=\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right)
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.
Of course, we also need that I is a cover.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    1: \(y \leftarrow 0\)
    2: \(I \leftarrow \varnothing\)
    3: while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
    4: \(\quad\) increase dual variable \(y_{u}\) until constraint for some
    new set \(S_{\ell}\) becomes tight
5: \(\quad I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

```
Algorithm 1 Greedy
    1: \(I \leftarrow \varnothing\)
    2: \(\hat{S}_{j} \leftarrow S_{j} \quad\) for all \(j\)
    3: while \(I\) not a set cover do
    4: \(\quad \ell \leftarrow \arg \min _{j: \hat{S}_{j} \neq 0} \frac{w_{j}}{\left|\hat{S}_{j}\right|}\)
    5: \(\quad I \leftarrow I \cup\{\ell\}\)
    6: \(\quad \hat{S}_{j} \leftarrow \hat{S}_{j}-S_{\ell} \quad\) for all \(j\)
```

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, and $S \subseteq\{1, \ldots, k\}$ then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i \in S} a_{i}}{\sum_{i \in S} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence, $w_{j}| | \hat{S}_{j} \left\lvert\, \leq \frac{\mathrm{OPT}}{n_{\ell}}\right.$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\sum_{j \in I} w_{j}
$$

Technique 4: The Greedy Algorithm

$$
\sum_{j \in I} w_{j} \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \text { OPT } \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right)
\end{aligned}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{n} \frac{1}{i}
\end{aligned}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{n} \frac{1}{i} \\
& =H_{n} \cdot \mathrm{OPT} \leq \mathrm{OPT}(\ln n+1)
\end{aligned}
$$

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$$
\operatorname{Pr}[u \text { not covered in one round }]
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{gathered}
\operatorname{Pr}[u \text { not covered in one round }] \\
=\prod_{j: u \in S_{j}}\left(1-x_{j}\right)
\end{gathered}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& \qquad=\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& \quad=\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1}
\end{aligned}
$$

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1} .
\end{aligned}
$$

Probability that $\boldsymbol{u} \in \boldsymbol{U}$ is not covered (after $\boldsymbol{\ell}$ rounds):

$$
\operatorname{Pr}[u \text { not covered after } \ell \text { round }] \leq \frac{1}{e^{\ell}} .
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right]
\end{aligned}
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

Lemma 71

With high probability $\mathcal{O}(\log n)$ rounds suffice.

$$
\begin{aligned}
& \operatorname{Pr}[\exists u \in U \text { not covered after } \ell \text { round }] \\
& \quad=\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \quad \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

Lemma 71
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Proof: We have

$$
\operatorname{Pr}[\# \text { rounds } \geq(\alpha+1) \ln n] \leq n e^{-(\alpha+1) \ln n}=n^{-\alpha} .
$$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.
$E[$ cost $]$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$
E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot \mathrm{OPT}) n^{-\alpha}
$$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$
E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot \mathrm{OPT}) n^{-\alpha}=\mathcal{O}(\ln n) \cdot \mathrm{OPT}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.
$E[$ cost $]=$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
E[\text { cost }]= & \operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
E[\text { cost | success] }
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost } \mid \text { success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }])
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost } \mid \text { success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP})
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost | success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost | success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

for $n \geq 2$ and $\alpha \geq 1$.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $\left.2^{\text {poly }(\log n)}\right)$.

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n=2^{k}-1$
- Elements are all vectors \vec{x} over $G F[2]$ of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$
S_{\vec{y}}:=\left\{\vec{x} \mid \vec{x}^{T} \vec{y}=1\right\}
$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_{i}=\frac{1}{2^{k-1}}=\frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of $p<k$ sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

\min		L	
s.t.	\forall machines i	$\sum_{j} p_{j} \cdot x_{j, i}$	$\leq L$
	\forall jobs j	$\sum_{i} x_{j, i} \geq 1$	
	$\forall i, j$	$x_{j, i}$	$\in\{0,1\}$

Here the variable $x_{j, i}$ is the decision variable that describes whether job j is assigned to machine i.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Let $C_{\text {max }}^{*}$ denote the makespan of an optimal solution.

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Let $C_{\text {max }}^{*}$ denote the makespan of an optimal solution.
Clearly

$$
C_{\max }^{*} \geq \max _{j} p_{j}
$$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{j} p_{j}
$$

Local Search

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Analysis

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.
Note that every machine is busy before time S_{ℓ}, because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j}
$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j} \leq\left(2-\frac{1}{m}\right) C_{\max }^{*}
$$

A Tight Example

$$
\begin{aligned}
& p_{\ell} \approx S_{\ell}+\frac{S_{\ell}}{m-1} \\
& \frac{\mathrm{ALG}}{\mathrm{OPT}}=\frac{S_{\ell}+p_{\ell}}{p_{\ell}} \approx \frac{2+\frac{1}{m-1}}{1+\frac{1}{m-1}}=2-\frac{1}{m}
\end{aligned}
$$

A Greedy Strategy

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2 -approximations.

A Greedy Strategy

Lemma 73
If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*}
$$

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

Tight Example

- $2 m+1$ jobs

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i} \leq W$	
	x_{i}	$\in\{0,1\}$	

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack
1: $A(1) \leftarrow\left[(0,0),\left(p_{1}, w_{1}\right)\right]$
2: for $j \leftarrow 2$ to n do
3: $\quad A(j) \leftarrow A(j-1)$
4: \quad for each $(p, w) \in A(j-1)$ do
5: \quad if $w+w_{j} \leq W$ then
6:
add ($p+p_{j}, w+w_{j}$) to $A(j)$
7: remove dominated pairs from $A(j)$
8: return $\max _{(p, w) \in A(n)} p$
The running time is $\mathcal{O}(n \cdot \min \{W, P\})$, where $P=\sum_{i} p_{i}$ is the total profit of all items. This is only pseudo-polynomial.

15 Rounding Data + Dynamic Programming

Definition 74
An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most
$\mathcal{O}\left(n P^{\prime}\right)$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)
$$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right)
$$

15 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) .
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\sum_{i \in S} p_{i}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\sum_{i \in S} p_{i} \geq \mu \sum_{i \in S} p_{i}^{\prime}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime}
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M
\end{aligned}
$$

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M \\
& \geq(1-\epsilon) \mathrm{OPT}
\end{aligned}
$$

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where l is the last job to complete.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where l is the last job to complete.
Together with the obervation that if each $p_{i} \geq \frac{1}{3} C_{\text {max }}^{*}$ then LPT is optimal this gave a $4 / 3$-approximation.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.
2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have a cost of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$
p_{\ell} \leq \sum_{j} p_{j} /(m k)
$$

which is at most $C_{\text {max }}^{*} / k$.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km}, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km}, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k=\left\lceil\frac{1}{\epsilon}\right\rceil$.

How to get rid of the requirement that m is constant?

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$).

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$.

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T / k.
- Otw. it is a short job.
- We round all long jobs down to multiples of T / k^{2}.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

Since, jobs had been rounded to multiples of T / k^{2} going from rounded sizes to original sizes gives that the Makespan is at most

$$
\left(1+\frac{1}{k}\right) T .
$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$
T+\frac{T}{k} \leq\left(1+\frac{1}{k}\right) T
$$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have

$$
\begin{aligned}
& \operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \\
& \quad= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\
1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \neq 0 \\
\infty & \text { otw. }\end{cases}
\end{aligned}
$$

where C is the set of all configurations.

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have

$$
\begin{aligned}
& \operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \\
& \quad= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\
1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \neq 0 \\
\infty & \text { otw. }\end{cases}
\end{aligned}
$$

where C is the set of all configurations.
Hence, the running time is roughly $(k+1)^{k^{2}} n^{k^{2}} \approx(n k)^{k^{2}}$.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76
There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless $\mathrm{P}=\mathrm{NP}$

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.

More General

Let OPT $\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.

$$
\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)
$$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{A}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{A}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{A}-s_{A}\right) & \left(n_{1}, \ldots, n_{A}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
$|C| \leq(B+1)^{A}$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O\left((B+1)^{A} n^{A}\right)$ because the dynamic programming table has just n^{A} entries.

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 77
There is no ρ-approximation for Bin Packing with $\rho<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Bin Packing

Definition 78
An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Choose $\gamma=\epsilon / 2$. Then we either use ℓ bins or at most

$$
\frac{1}{1-\epsilon / 2} \cdot \mathrm{OPT}+1 \leq(1+\epsilon) \cdot \mathrm{OPT}+1
$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Linear Grouping:
Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping

Linear Grouping

Linear Grouping

Linear Grouping

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Lemma 80
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Lemma 80

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Lemma 81
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I^{\prime} the items for group 2 have been packed;

Lemma 81

$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I^{\prime} the items for group 2 have been packed;

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.

Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (note that $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).
Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

- cost (for large items) at most

$$
\operatorname{OPT}\left(I^{\prime}\right)+k \leq \operatorname{OPT}(I)+\epsilon \operatorname{SIZE}(I) \leq(1+\epsilon) \operatorname{OPT}(I)
$$

- running time $\mathcal{O}\left(\left(\frac{2}{\epsilon} n\right)^{4 / \epsilon^{2}}\right)$.

Can we do better?

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right) .
$$

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right) .
$$

Note that this is usually better than a guarantee of

$$
(1+\epsilon) \mathrm{OPT}(I)+1 .
$$

Configuration LP

Change of Notation:

- Group pieces of identical size.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2};
- s_{m} smallest size and b_{m} number of pieces of size s_{m}.

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}.

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}. Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}. Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Configuration LP

Let N be the number of configurations (exponential).

Configuration LP

Let N be the number of configurations (exponential).
Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

Configuration LP

Let N be the number of configurations (exponential).
Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

min		$\sum_{j=1}^{N} x_{j}$		
s.t.	$\forall i \in\{1 \ldots m\}$	$\sum_{j=1}^{N} T_{j i} x_{j}$	\geq	b_{i}
	$\forall j \in\{1, \ldots, N\}$	x_{j}	\geq	0
	$\forall j \in\{1, \ldots, N\}$	x_{j}	integral	

How to solve this LP?

later...

We can assume that each item has size at least $1 / \operatorname{SIZE}(I)$.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_{2}, \ldots, G_{r-1}.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_{2}, \ldots, G_{r-1}.
- Only the size of items in the last group G_{Y} may sum up to less than 2.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.
- Observe that $n_{i} \geq n_{i-1}$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$.

Lemma 82

The number of different sizes in I^{\prime} is at most $\operatorname{SIZE}(I) / 2$.

- Each group that survives (recall that G_{1} and G_{r} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$.
- All items in a group have the same size in I^{\prime}.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{Y} is at most 6 as a group has total size at most 3 .

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{Y} is at most 6 as a group has total size at most 3.
- Consider a group G_{i} that has strictly more items than G_{i-1}.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3 .
- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the average piece size is only $3 / n_{i}$.

Lemma 83

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3 .
- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the average piece size is only $3 / n_{i}$.

- Summing over all i that have $n_{i}>n_{i-1}$ gives a bound of at most

$$
\sum_{j=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log (\operatorname{SIZE}(I)))
$$

(note that $n_{r} \leq \operatorname{SIZE}(I)$ since we assume that the size of each item is at least $1 / \operatorname{SIZE}(I))$.

Algorithm 1 BinPack
1: if $\operatorname{SIZE}(I)<10$ then
2: pack remaining items greedily
3: Apply harmonic grouping to create instance I^{\prime}; pack discarded items in at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$ bins.
4: Let x be optimal solution to configuration LP
5: Pack $\left\lfloor x_{j}\right\rfloor$ bins in configuration T_{j} for all j; call the packed instance I_{1}.
6: Let I_{2} be remaining pieces from I^{\prime}
7: Pack I_{2} via $\operatorname{BinPack}\left(I_{2}\right)$

Analysis

$$
\mathrm{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\operatorname{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\operatorname{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\mathrm{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).
- $x_{j}-\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{2}.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$
\mathcal{O}(\log (\operatorname{SIZE}(I))) \cdot L
$$

many bins where L is the number of recursion levels.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.
- The total size of items in I_{2} can be at most $\sum_{j=1}^{N} x_{j}-\left\lfloor x_{j}\right\rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.
Primal

$$
\begin{array}{|crrl|}
\hline \text { min } & & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} \geq & b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} \geq 0 \\
\hline
\end{array}
$$

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.
Primal

$$
\begin{array}{|crrl|}
\hline \text { min } & & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} & \geq b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} \geq 0 \\
\hline
\end{array}
$$

Dual

\max		$\sum_{i=1}^{m} y_{i} b_{i}$
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i} \leq 1$
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$

Separation Oracle

Suppose that I am given variable assignment y for the dual.
How do I find a violated constraint?

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot y_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

But this is the Knapsack problem.

Separation Oracle

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:
Dual ${ }^{\prime}$

\max		$\sum_{i=1}^{m} y_{i} b_{i}$
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i} \leq 1+\epsilon^{\prime}$
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual ${ }^{\prime}$

Primal'

$$
\begin{array}{|crrl|}
\hline \text { min } & & \left(1+\epsilon^{\prime}\right) \sum_{j=1}^{N} x_{j} & \\
\mathrm{s.t.} & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} & \geq b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} & \geq 0 \\
\hline
\end{array}
$$

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

$$
\left(1+\epsilon^{\prime}\right) \mathrm{OPT}_{\mathrm{LP}}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right)
$$

bins.

This gives that overall we need at most

$$
\left(1+\epsilon^{\prime}\right) \mathrm{OPT}_{\mathrm{LP}}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right)
$$

bins.
We can choose $\epsilon^{\prime}=\frac{1}{\text { OPT }}$ as OPT $\leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

16.1 MAXSAT

Problem definition:

- n Boolean variables

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

$E[W]$

$$
E[W]=\sum_{j} w_{j} E\left[X_{j}\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j}
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j} \\
& \geq \frac{1}{2} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

| \max | | $\sum_{j} w_{j} z_{j}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall j$ | $\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)$ | $\geq z_{j}$ |
| | $\forall i$ | y_{i} | $\in\{0,1\}$ |
| | $\forall j$ | z_{j} | ≤ 1 |

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Lemma 84 (Geometric Mean \leq Arithmetic Mean)
For any nonnegative a_{1}, \ldots, a_{k}

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
f(\lambda)=f((1-\lambda) 0+\lambda 1)
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1)
\end{aligned}
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}} \\
& \leq\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

$E[W]$

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \text { OPT }
\end{aligned}
$$

MAXSAT: The better of two

Theorem 87
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
E\left[\max \left\{W_{1}, W_{2}\right\}\right]
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \quad \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to $1 /$ true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

Theorem 88
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\
& \leq 4^{-z_{j}}
\end{aligned}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence, $\operatorname{Pr}\left[C_{j}\right.$ satisfied $]$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} \mathrm{OPT}
$$

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Can we do better?
Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set

$$
z_{1}=z_{2}=z_{3}=z_{4}=1
$$

- hence, the LP has value 4 .

MaxCut

MaxCut

Given a weighted graph $G=(V, E, w), w(v) \geq 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Semidefinite Programming

$$
\begin{array}{rrr}
\hline \max / \mathrm{min} & & \sum_{i, j} c_{i j} x_{i j} \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k} x_{i j}=b_{k} \\
& x_{i j}=x_{j i} \\
& X=\left(x_{i j}\right) \text { is psd. } \\
& & \\
&
\end{array}
$$

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

[^0]
Vector Programming

$$
\begin{array}{rcc}
\max / \min & & \sum_{i, j} c_{i j}\left(v_{i}^{t} v_{j}\right) \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k}\left(v_{i}^{t} v_{j}\right) \\
& v_{i} \in \mathbb{R}^{n}
\end{array}=b_{k}
$$

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$
\begin{aligned}
& \max \quad \frac{1}{2} \sum_{i, j} w_{i j}\left(1-y_{i} y_{j}\right) \\
& \forall i \\
& y_{i} \in\{-1,1\}
\end{aligned}
$$

This is exactly MaxCut!

Semidefinite Relaxation

| \max | | $\frac{1}{2} \sum_{i, j} w_{i j}\left(1-v_{i}^{t} v_{j}\right)$ | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| | $\forall i$ | $v_{i}^{t} v_{i}$ | $=1$ | |
| | $\forall i$ | v_{i} | $\in \mathbb{R}^{n}$ | |

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

Rounding the SDP-Solution

- Choose a random vector r such that $r /\|r\|$ is uniformly distributed on the unit sphere.
- If $r^{t} v_{i}>0$ set $y_{i}=1$ else set $y_{i}=-1$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left[r=\left(x_{1}, \ldots, x_{n}\right)\right] \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{x_{1}^{2} / 2} \cdot e^{x_{2}^{2} / 2} \cdot \ldots \cdot e^{x_{n}^{2} / 2} \mathrm{~d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n} \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)} \mathrm{d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n}
\end{aligned}
$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_{1} and e_{2} are independent and are normally distributed with mean 0 and variance 1 iff e_{1} and e_{2} are orthogonal.

Note that this is clear if e_{1} and e_{2} are standard basis vectors.

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection ($r^{\prime} /\left\|r^{\prime}\right\|$) is uniformly distributed on the unit circle within the hyperplane.

Rounding the SDP-Solution

- if the normalized projection falls into the shaded region, v_{i} and v_{j} are rounded to different values
- this happens with probability θ / π

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$
- ratio is at most

$$
\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)} \geq 0.878
$$

Rounding the SDP-Solution

Rounding the SDP-Solution

Rounding the SDP-Solution

Theorem 91

Given the unique games conjecture, there is no α-approximation for the maximum cut problem with constant

$$
\alpha>\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)}
$$

unless $\mathrm{P}=\mathrm{NP}$.

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\min		$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i} \geq$	1
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \geq$	0

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\min		$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$	
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \geq 0$	

Dual Formulation:

$$
\begin{array}{|ccr|}
\hline \max & & \sum_{u \in U} y_{u} \\
\text { s.t. } & \forall i \in\{1, \ldots, k\} & \\
& \sum_{u: u \in S_{i}} y_{u} & \leq w_{i} \\
y_{u} & \geq 0
\end{array}
$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !).

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !).
- If this is the constraint for set S_{j} set $x_{j}=1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Analysis:

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}=\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e}
$$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\begin{aligned}
\sum_{j} w_{j} x_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e} & =\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e} \\
& \leq f \cdot \sum_{e} y_{e} \leq f \cdot \mathrm{OPT}
\end{aligned}
$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

If we would also fulfill dual slackness conditions

$$
y_{e}>0 \Rightarrow \sum_{j: e \in S_{j}} x_{j}=1
$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

\[

\]

$$
\begin{array}{|crrll|}
\hline \max & & \sum_{i} b_{i} y_{i} & \\
\text { s.t. } & \forall j & \sum_{i} a_{i j} y_{i} & \leq c_{j} \\
& \forall i & y_{i} & \geq 0 \\
\hline
\end{array}
$$

Suppose we have a primal/dual pair

\min		$\sum_{j} c_{j} x_{j}$		
s.t.	$\forall i$	$\sum_{j:} a_{i j} x_{j}$	\geq	b_{i}
	$\forall j$	x_{j}	\geq	0

\max		$\sum_{i} b_{i} y_{i}$		
s.t.	$\forall j$	$\sum_{i} a_{i j} y_{i}$	\leq	c_{j}
	$\forall i$	y_{i}	≥ 0	

and solutions that fulfill approximate slackness conditions:

$$
\begin{aligned}
& x_{j}>0 \Rightarrow \sum_{i} a_{i j} y_{i} \geq \frac{1}{\alpha} c_{j} \\
& y_{i}>0 \Rightarrow \sum_{j} a_{i j} x_{j} \leq \beta b_{i}
\end{aligned}
$$

Then

$$
\sum_{j} c_{j} x_{j}
$$

Then

Then

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j}
\end{aligned} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j}
$$

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
& \uparrow \\
& \text { primal cost }=\alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{j} c_{j} x_{j} & \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
{ } } & =\alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{j} c_{j} x_{j} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
& \frac{\text { primal cost }^{l}}{}= \alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \cdot \sum_{i} b_{i} y_{i} \\
& \uparrow
\end{aligned}
$$

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The $O(\log n)$-approximation for Set Cover does not help us to get a good solution.

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

| \min | | $\sum_{v} w_{v} x_{v}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall C \in \mathbb{C}$ | $\sum_{v \in C} x_{v}$ | ≥ 1 |
| | $\forall v$ | x_{v} | ≥ 0 |

Dual Formulation:

\[

\]

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).
- Increase y_{C} until dual constraint for some vertex v becomes tight.

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).
- Increase y_{C} until dual constraint for some vertex v becomes tight.
- set $x_{v}=1$.

Then

$$
\sum_{v} w_{v} x_{v}
$$

Then

$$
\sum_{v} w_{v} x_{v}=\sum_{v} \sum_{C: v \in C} y_{C} x_{v}
$$

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.
If every cycle is short we get a good approximation ratio, but this is unrealistic.

```
Algorithm 1 FeedbackVertexSet
    1: \(y \leftarrow 0\)
    2: \(x \leftarrow 0\)
    3: while exists cycle \(C\) in \(G\) do
    4: \(\quad\) increase \(y_{C}\) until there is \(v \in C\) s.t. \(\sum_{c: v \in C} y_{C}=w_{v}\)
    5: \(\quad x_{v}=1\)
    6: \(\quad\) remove \(v\) from \(G\)
    7: repeatedly remove vertices of degree 1 from \(G\)
```


Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$
y_{C}>0 \Rightarrow|S \cap C| \leq \mathcal{O}(\log n)
$$

Primal Dual for Shortest Path

Given a graph $G=(V, E)$ with two nodes $s, t \in V$ and edge-weights $c: E \rightarrow \mathbb{R}^{+}$find a shortest path between s and t w.r.t. edge-weights c.

Primal Dual for Shortest Path

Given a graph $G=(V, E)$ with two nodes $s, t \in V$ and edge-weights $c: E \rightarrow \mathbb{R}^{+}$find a shortest path between s and t w.r.t. edge-weights c.

\[

\]

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

The Dual:

$\left.$| \max | $\sum_{S} y_{S}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| s.t. | $\forall e \in E$ | $\sum_{S: e \in \delta(S)} y_{S}$ | | |$\leq c(e) \right\rvert\,$

Primal Dual for Shortest Path

The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$	$\leq c(e)$
	$\forall S \in S$	y_{S}	≥ 0

Here $\delta(S)$ denotes the set of edges with exactly one end-point in
S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.
An edge cannot be shorter than all the moats that it has to cross.

```
Algorithm 1 PrimalDualShortestPath
    1: \(y \leftarrow 0\)
    2: \(F \leftarrow \varnothing\)
    3: while there is no \(s-t\) path in \((V, F)\) do
    4: Let \(C\) be the connected component of \((V, F)\) con-
        taining \(s\)
    5: Increase \(y_{C}\) until there is an edge \(e^{\prime} \in \delta(C)\) such
        that \(\sum_{S: e^{\prime} \in \delta(S)} y_{S}=c\left(e^{\prime}\right)\).
    6: \(\quad F \leftarrow F \cup\left\{e^{\prime}\right\}\)
    7: Let \(P\) be an \(s\) - \(t\) path in \((V, F)\)
    8: return \(P\)
```


Lemma 93

At each point in time the set F forms a tree.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.

Lemma 93

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

$$
\sum_{e \in P} c(e)
$$

$$
\sum_{e \in P} c(e)=\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.
Hence, we find a shortest path.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

If $\delta(S)$ contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \subseteq V: S \in S_{i}$ for some i	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	$\in\{0,1\}$

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \subseteq V: S \in S_{i}$ for some i	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	$\in\{0,1\}$

Here S_{i} contains all sets S such that $s_{i} \in S$ and $t_{i} \notin S$.

| \max | | |
| ---: | ---: | ---: | ---: |
| s.t. | $\forall e \in E \quad$
 $S: \exists i$ s.t. $S \in S_{i}$ y_{S}
 $\sum_{S: e \in \delta(S)} y_{S}$ $\leq c(e)$
 $y_{S} \geq 0$ | |
| | | |

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

```
Algorithm 1 FirstTry
    1: \(y \leftarrow 0\)
    2: \(F \leftarrow \varnothing\)
    3: while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
    4: \(\quad\) Let \(C\) be some connected component of \((V, F)\) such
    that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
    5: Increase \(y_{C}\) until there is an edge \(e^{\prime} \in \delta(C)\) s.t.
    \(\sum_{S \in S_{i}: e^{\prime} \in \delta(S)} y_{S}=c_{e^{\prime}}\)
    6: \(\quad F \leftarrow F \cup\left\{e^{\prime}\right\}\)
    7: return \(\bigcup_{i} P_{i}\)
```

$$
\sum_{e \in F} c(e)
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S} .
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.
- $y_{\left\{v_{0}\right\}}>0$ but $\left|\delta\left(\left\{v_{0}\right\}\right) \cap F\right|=k$.

```
Algorithm 1 SecondTry
    1: \(y \leftarrow 0 ; F \leftarrow \varnothing ; \ell \leftarrow 0\)
    2: while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
    3: \(\quad \ell \leftarrow \ell+1\)
    4: Let \(\mathbb{C}\) be set of all connected components \(C\) of \((V, F)\)
        such that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
    5: \(\quad\) Increase \(y_{C}\) for all \(C \in \mathbb{C}\) uniformly until for some edge
        \(e_{\ell} \in \delta\left(C^{\prime}\right), C^{\prime} \in \mathbb{C}\) s.t. \(\sum_{s: e_{\ell} \in \delta(S)} y_{S}=c_{e_{\ell}}\)
    6: \(\quad F \leftarrow F \cup\left\{e_{\ell}\right\}\)
    7: \(F^{\prime} \leftarrow F\)
    8: for \(k \leftarrow \ell\) downto 1 do // reverse deletion
    9: \(\quad\) if \(F^{\prime}-e_{k}\) is feasible solution then
10: remove \(e_{k}\) from \(F^{\prime}\)
11: return \(F^{\prime}\)
```

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Example

$$
\mathrm{o}_{S_{3}}
$$

$$
\circ_{S_{1}} \quad \circ_{S_{2}} \quad t_{2}^{\circ}
$$

-

${ }^{\circ} t_{1}$

- ${ }^{\circ} t_{3}$

Example

Lemma 94

For any \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$
\sum_{e \in F^{\prime}} c_{e}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in \mathbb{C}}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|\mathbb{C}|$.

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S}
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in \mathbb{C}}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|\mathbb{C}|$.

- Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathscr{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathscr{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.
- Let $H=F^{\prime}-F_{i}$.

Lemma 95

For any set of connected components \mathbb{C} in any iteration of the algorithm

$$
\sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \leq 2|\mathbb{C}|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_{i} be the set of edges in F at the beginning of the iteration.
- Let $H=F^{\prime}-F_{i}$.
- All edges in H are necessary for the solution.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$
\sum_{v \in R} \operatorname{deg}(v) \geq \sum_{C \in \mathbb{C}}\left|\delta(C) \cap F^{\prime}\right| \stackrel{?}{\leq} 2|\mathbb{C}|=2|R|
$$

- Suppose that no node in B has degree one.
- Suppose that no node in B has degree one.
- Then
- Suppose that no node in B has degree one.
- Then

$$
\sum_{v \in R} \operatorname{deg}(v)
$$

- Suppose that no node in B has degree one.
- Then

$$
\sum_{v \in R} \operatorname{deg}(v)=\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v)
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|
\end{aligned}
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- But then it must be a red node.

18 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

S is the set of subsets that separate s from t.

18 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e} \geq$	1
	$\forall e \in E$	$x_{e} \geq$	0

S is the set of subsets that separate s from t.
The Dual:

max	$\sum_{S} y_{S}$				
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$			
	$\forall S \in S$	y_{S}	\geq	0	

18 Cuts \& Metrics

Shortest Path

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

S is the set of subsets that separate s from t.
The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S} \leq c(e)$	
	$\forall S \in S$	$y_{S} \geq 0$	

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

18 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

\mathcal{P} is the set of path that connect s and t.

18 Cuts \& Metrics

Minimum Cut

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

max	$\sum_{P} y_{P}$				
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$			
	$\forall P \in \mathcal{P}$	y_{P}			

18 Cuts \& Metrics

Minimum Cut

min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

\max	$\sum_{P} y_{P}$		
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$	$\leq c(e)$
	$\forall P \in \mathcal{P}$	y_{P}	≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts \& Metrics

Minimum Cut

\[

\]

\mathcal{P} is the set of path that connect s and t.
The Dual:

\[

\]

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
- Define $d(u, v)=\min _{\text {path }} P$ btw. u and $v \sum_{e \in P} \ell_{e}$ as the Shortest Path Metric induced by ℓ_{e}.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

18 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s - t-cut.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose?

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:
choose r u.a.r. (uniformly at random) from interval $[0,1$)

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

${ }_{t}$

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

0
t

What is the probability that an edge (u, v) is in the cut?

\circ
t

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0}
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\begin{aligned}
\operatorname{Pr}[e \text { is cut }] & =\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0} \\
& \leq \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

min	$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

min	$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Here \mathcal{P}_{i} contains all path P between s_{i} and t_{i}.

Re-using the analysis for the single-commodity case is

 difficult.Re-using the analysis for the single-commodity case is difficult.

$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

Re-using the analysis for the single-commodity case is difficult.

$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

- If for some R the balls $B\left(s_{i}, R\right)$ are disjoint between different sources, we get a $1 / R$ approximation.
- However, this cannot be guaranteed.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.

Algorithm 1 RegionGrowing $\left(s_{i}, p\right)$
1: $z \leftarrow 0$
2: repeat
3: \quad flip a coin $(\operatorname{Pr}[$ heads $]=p)$
4: $\quad z \leftarrow z+1$
5: until heads
6: return $B\left(s_{i}, z\right)$

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

- probability of cutting an edge is only p

```
Algorithm 1 Multicut \(\left(G^{\prime}\right)\)
    1: while \(\exists s_{i}-t_{i}\) pair in \(G^{\prime}\) do
    2: \(\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)\)
    3: \(\quad G^{\prime}=G^{\prime} \backslash C / /\) cuts edges leaving \(C\)
    4: return \(B\left(s_{i}, z\right)\)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut

```
Algorithm 1 Multicut(G')
    1: while }\exists\mp@subsup{s}{i}{}-\mp@subsup{t}{i}{}\mathrm{ pair in G}\mp@subsup{G}{}{\prime}\mathrm{ do
    2:
    3: }\quad\mp@subsup{G}{}{\prime}=\mp@subsup{G}{}{\prime}\C// cuts edges leaving 
4: return B(si,z)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p=\delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

Problem:

We may not cut all source-target pairs.
A component that we remove may contain an $s_{i}-t_{i}$ pair.

Problem:

We may not cut all source-target pairs.
A component that we remove may contain an $s_{i}-t_{i}$ pair.
If we ensure that we cut before reaching radius $1 / 2$ we are in good shape.

- choose $p=6 \ln k \cdot \delta$
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.

$$
\operatorname{Pr}[\text { not successful }] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}
$$

- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.
$\operatorname{Pr}[$ not successful $] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}$
- Hence,

$$
\operatorname{Pr}[\exists i \text { that is not successful }] \leq \frac{1}{k^{2}}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

E[cutsize | succ.]

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }] \\
\mathrm{E}[\text { cutsize } \mid \text { succ. }]= & \frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize | no succ.] }}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize } \mid \text { succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

Note: success means all source-target pairs separated
We assume $k \geq 2$.

If we are not successful we simply perform a trivial k-approximation.

This only increases the expected cost by at most $\frac{1}{k^{2}} \cdot k \mathrm{OPT} \leq \mathrm{OPT} / k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot$ OPT in expectation.

[^0]: ' Note that wlog. we can assume that all variables appear in this matrix. Suppose ; we have a non-negative scalar z and want to express something like

 $$
 \sum_{i j} a_{i j k} x_{i j}+z=b_{k}
 $$

 ; where $x_{i j}$ are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell \ell}$, and additionally introduce constraints $x_{\ell r}=0$ and $x_{r \ell}=0$.

