Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
\max \quad 13 a & +23 b \\
\text { s.t. } 5 a+15 b & \leq 480 \\
4 a+4 b & \leq 160 \\
35 a+20 b & \leq 1190 \\
a, b & \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_{i} \geq 0$) such that $\sum_{i} y_{i} a_{i j} \geq c_{j}$ then $\sum_{i} y_{i} b_{i}$ will be an upper bound.

Duality

Definition 30

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$
w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
$$

is called the dual problem.

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{T} x \mid-A x \geq-b, x \geq 0\right\}$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{T} y \mid-A^{T} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{T} x \mid-A x \geq-b, x \geq 0\right\}$
- $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$

Weak Duality

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ and $w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{T} y \geq c, y \geq 0\right\}$.

Weak Duality

Let $z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$ and
$w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{T} y \geq c, y \geq 0\right\}$.

Theorem 32 (Weak Duality)
Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$
c^{T} \hat{x} \leq z \leq w \leq b^{T} \hat{y} .
$$

Weak Duality

$$
A^{T} \hat{y} \geq c
$$

Weak Duality

$$
A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c
$$

Weak Duality

$$
A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0)
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{T} \hat{x}=z$, and dual feasible \hat{y} with $b^{T} \hat{y}=w$ we get $z \leq w$.

Weak Duality

$$
\begin{aligned}
& A^{T} \hat{y} \geq c \Rightarrow \hat{x}^{T} A^{T} \hat{y} \geq \hat{x}^{T} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{T} A \hat{x} \leq \hat{y}^{T} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{T} \hat{x} \leq \hat{y}^{T} A \hat{x} \leq b^{T} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{T} \hat{x}=z$, and dual feasible \hat{y} with $b^{T} \hat{y}=w$ we get $z \leq w$.

If P is unbounded then D is infeasible.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$
\begin{aligned}
z & =\max \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
w & =\min \left\{b^{T} y \mid A^{T} y \geq c\right\}
\end{aligned}
$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Proof

Primal:

$\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}$

Proof

Primal:

$$
\begin{aligned}
& \max \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& \quad=\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\min \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} \cdot\left(y^{+}-y^{-}\right) \mid A^{T} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{T} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{T} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min & \left\{\left[b^{T}-b^{T}\right] y \mid\left[A^{T}-A^{T}\right] y \geq c, y \geq 0\right\} \\
& =\min \left\{\left[b^{T}-b^{T}\right] \cdot\left[\begin{array}{c}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{T}-A^{T}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} \cdot\left(y^{+}-y^{-}\right) \mid A^{T} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{T} y^{\prime} \mid A^{T} y^{\prime} \geq c\right\}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}=\left(A x^{*}\right)^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
b^{T} y^{*}=\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B} \\
& =c^{T} x^{*}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{T}-c_{B}^{T} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{T}\left(A_{B}^{-1}\right)^{T} C_{B} \geq C$
$y^{*}=\left(A_{B}^{-1}\right)^{T} c_{B}$ is solution to the dual $\min \left\{b^{T} y \mid A^{T} y \geq c\right\}$.

$$
\begin{aligned}
b^{T} y^{*} & =\left(A x^{*}\right)^{T} y^{*}=\left(A_{B} x_{B}^{*}\right)^{T} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{T}\left(A_{B}^{-1}\right)^{T} c_{B}=\left(x_{B}^{*}\right)^{T} A_{B}^{T}\left(A_{B}^{-1}\right)^{T} c_{B} \\
& =c^{T} x^{*}
\end{aligned}
$$

Hence, the solution is optimal.

5.3 Strong Duality

$P=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\}$
n_{A} : number of variables, m_{A} : number of constraints
We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P}=\max \left\{c^{T} x \mid \bar{A} x \leq \bar{b}\right\}$
$n_{\bar{A}}=n_{A}, m_{\bar{A}}=m_{A}+n_{A}$
Dual $D=\min \left\{\bar{b}^{T} y \mid \bar{A}^{T} y=c, y \geq 0\right\}$.

5.3 Strong Duality

'If we have a conic combination y of c then. $b^{T} y$ is an upper bound of the profit we can
 obtain (weak duality):
$c^{T} x=\left(\bar{A}^{T} y\right)^{T} x=y^{T} \bar{A} x \leq y^{T} \bar{b}$
If x and y are optimal then the duality gap is 0 (strong duality). This means

$$
\begin{aligned}
0 & =c^{T} x-y^{T} \bar{b} \\
& =\left(\bar{A}^{T} y\right)^{T} x-y^{T} \bar{b} \\
& =y^{T}(\bar{A} x-\bar{b})
\end{aligned}
$$

The last term can only be 0 if y_{i} is 0 whenever the i-th constraint is not tight. This means we have a conic combination of c, by normals (columns of \bar{A}^{T}) of tight constraints.

Conversely, if we have x such that the nor-1 mals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.
The profit vector c lies in the cone generated by thermals for the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^{*} and w^{*} denote the optimal solution to P and D, respectively. Then

$$
z^{*}=w^{*}
$$

Lemma 34 (Weierstrass)

Let X be a compact set and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.
(without proof)

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^{*} \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.

$\stackrel{\circ}{y}$

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.

$\stackrel{\circ}{y}$

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \varnothing$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.
$\left\|y-x^{*}\right\|^{2}$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2} \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{T} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{T} y<\alpha$; $a^{T} x \geq \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.
- Also, $a^{T} y=a^{T}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

$$
\begin{aligned}
& \text { 1. } \exists x \in \mathbb{R}^{n} \text { with } A x=b, x \geq 0 \\
& \text { 2. } \exists y \in \mathbb{R}^{m} \text { with } A^{T} y \geq 0, b^{T} y<0
\end{aligned}
$$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

```
1. }\existsx\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ with }Ax=b,x\geq
2. }\existsy\in\mp@subsup{\mathbb{R}}{}{m}\mathrm{ with }\mp@subsup{A}{}{T}y\geq0,\mp@subsup{b}{}{T}y<
```

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Hence, at most one of the statements can hold.

Farkas Lemma

If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Proof of Farkas Lemma

Proof of Farkas Lemma

Now, assume that 1 . does not hold.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$. Hence, $y^{T} A \geq 0$ as we can choose x arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

$$
\begin{aligned}
& \text { 1. } \exists x \in \mathbb{R}^{n} \text { with } A x \leq b, x \geq 0 \\
& \text { 2. } \exists y \in \mathbb{R}^{m} \text { with } A^{T} y \geq 0, b^{T} y<0, y \geq 0
\end{aligned}
$$

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0, y \geq 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^{n}$ with $[A I] \cdot\left[\begin{array}{l}x \\ s\end{array}\right]=b, x \geq 0, s \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\left[\begin{array}{c}A^{T} \\ I\end{array}\right] y \geq 0, b^{T} y<0$

Proof of Strong Duality

$$
\begin{aligned}
& P: z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\} \\
& D: w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$
z=w
$$

Proof of Strong Duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}:$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} \\
& \text { s.t. } A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } \quad A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} \\
& \text { s.t. } \quad A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v
\end{aligned} \quad<0
$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible.

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

Proof of Strong Duality

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.
Then y is feasible for the dual but $b^{T} y<\alpha$. This means that $w<\alpha$.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$
s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $<\alpha$.

Complementary Slackness

Lemma 41

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

Complementary Slackness

Lemma 41

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

If we say that a variable $x_{j}^{*}\left(y_{i}^{*}\right)$ has slack if $x_{j}^{*}>0\left(y_{i}^{*}>0\right)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

From the constraint of the dual it follows that $y^{T} A \geq c^{T}$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $\left(y^{T} A-c^{T}\right)_{j}>0$ (the j-th constraint in the dual is not tight) then $x_{j}=0$ (2.). The result for (1./3./4.) follows similarly.

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{aligned}
& \min 480 C+160 H+1190 M \\
& \text { s.t. } 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{aligned}
& \min 480 C+160 H+1190 M \\
& \text { s.t. } 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{aligned}
$$

Note that brewer won't sell (at least not all) if e.g. $5 C+4 H+35 M<13$ as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$. Because of strong duality this is equal to

$$
\begin{array}{|crl}
\hline \min & \left(b^{T}+\epsilon^{T}\right) y & \\
\text { s.t. } & A^{T} y & \geq c \\
& y & \geq 0 \\
& y &
\end{array}
$$

Interpretation of Dual Variables

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

Example

Example

Example

Example

Example

The change in profit when increasing hops by one unit is

$$
=c_{B}^{T} A_{B}^{-1} e_{h}
$$

Example

The change in profit when increasing hops by one unit is

$$
=\underbrace{c_{B}^{T} A_{B}^{-1}}_{y^{*}} e_{h}
$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y} .
$$

(capacity constraints)

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y} .
$$

(capacity constraints)

2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{x} f_{v x}=\sum_{x} f_{x v} .
$$

(flow conservation constraints)

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

LP-Formulation of Maxflow

\max		$\sum_{z} f_{s z}-\sum_{z} f_{z s}$		
s.t.	$\forall(z, w) \in V \times V$	$f_{z w}$	$\leq c_{z w}$	$\ell_{z w}$
	$\forall w \neq s, t$	$\sum_{z} f_{z w}-\sum_{z} f_{w z}$	$=0$	p_{w}
	$f_{z w}$	≥ 0		

LP-Formulation of Maxflow

$$
\quad \ell_{z w}
$$

| min | | $\sum_{(x y)} c_{x y} \ell_{x y}$ | |
| ---: | :--- | :--- | :--- | :--- |
| s.t. | $f_{x y}(x, y \neq s, t):$ | $1 \ell_{x y}-1 p_{x}+1 p_{y}$ | ≥ 0 |
| | $f_{s y}(y \neq s, t):$ | $1 \ell_{s y}+1 p_{y}$ | ≥ 1 |
| | $f_{x s}(x \neq s, t):$ | $1 \ell_{x s}-1 p_{x}$ | ≥-1 |
| | $f_{t y}(y \neq s, t):$ | $1 \ell_{t y}+1 p_{y}$ | ≥ 0 |
| | $f_{x t}(x \neq s, t):$ | $1 \ell_{x t}-1 p_{x}$ | ≥ 0 |
| | $f_{s t}:$ | $1 \ell_{s t}$ | ≥ 1 |
| | $f_{t s}:$ | $1 \ell_{t s}$ | ≥-1 |
| | | $\ell_{x y}$ | ≥ 0 |

LP-Formulation of Maxflow

\min		$\sum_{(x y)} c_{x y} \ell_{x y}$	
s.t.	$f_{x y}(x, y \neq s, t):$	$1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0$	
	$f_{s y}(y \neq s, t):$	$1 \ell_{s y}-1+1 p_{y} \geq$	0
	$f_{x s}(x \neq s, t):$	$1 \ell_{x s}-1 p_{x}+1 \geq$	0
	$f_{t y}(y \neq s, t):$	$1 \ell_{t y}-0+1 p_{y} \geq$	0
	$f_{x t}(x \neq s, t):$	$1 \ell_{x t}-1 p_{x}+0 \geq$	0
	$f_{s t}:$	$1 \ell_{s t}-1+0 \geq$	0
	$f_{t s}:$	$1 \ell_{t s}-0+1 \geq$	0
		$\ell_{x y} \geq$	0

LP-Formulation of Maxflow

\min		$\sum_{(x y)} c_{x y} \ell_{x y}$	
s.t.	$f_{x y}(x, y \neq s, t):$	$1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0$	
	$f_{s y}(y \neq s, t):$	$1 \ell_{s y}-p_{s}+1 p_{y} \geq$	0
	$f_{x s}(x \neq s, t):$	$1 \ell_{x s}-1 p_{x}+p_{s} \geq 0$	
	$f_{t y}(y \neq s, t):$	$1 \ell_{t y}-p_{t}+1 p_{y} \geq$	0
	$f_{x t}(x \neq s, t):$	$1 \ell_{x t}-1 p_{x}+p_{t} \geq 0$	
	$f_{s t}:$	$1 \ell_{s t}-p_{s}+p_{t} \geq 0$	
	$f_{t s}:$	$1 \ell_{t s}-p_{t}+p_{s} \geq 0$	
		$\ell_{x y} \geq$	0

with $p_{t}=0$ and $p_{s}=1$.

LP-Formulation of Maxflow

\min	$\sum_{(x y)} c_{x y} \ell_{x y}$		
s.t.	$f_{x y}:$	$1 \ell_{x y}-1 p_{x}+1 p_{y}$	≥ 0
			0
	$\ell_{x y}$	≥ 0	
p_{s}	$=1$		
	p_{t}	$=0$	

LP-Formulation of Maxflow

$$
\begin{aligned}
\min & \sum_{(x y)} c_{x y} \ell_{x y} \\
\text { s.t. } f_{x y}: 1 \ell_{x y}-1 p_{x}+1 p_{y} & \geq 0 \\
& \ell_{x y} \\
& \geq 0 \\
& p_{s}
\end{aligned}=1
$$

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.

LP-Formulation of Maxflow

$$
\begin{array}{|crl}
\hline \min & \sum_{(x y)} c_{x y} \ell_{x y} & \\
\text { s.t. } f_{x y}: & 1 \ell_{x y}-1 p_{x}+1 p_{y} & \geq 0 \\
& \ell_{x y} & \geq 0 \\
& p_{s} & =1 \\
& p_{t} & =0 \\
& & \\
& &
\end{array}
$$

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

LP-Formulation of Maxflow

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

The constraint $p_{x} \leq \ell_{x y}+p_{y}$ then simply follows from triangle inequality $\left(d(x, t) \leq d(x, y)+d(y, t) \Rightarrow d(x, t) \leq \ell_{x y}+d(y, t)\right)$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

