How do we get an upper bound to a maximization LP?

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15 b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a, b	≥ 0

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

9. Jul. 2022 77/116

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 31 The dual of the dual problem is the primal problem.

Proof:

The dual problem is

5.1 Weak Duality

9. Jul. 2022 79/116

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $\blacktriangleright w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

- $|0| < \alpha_{\rm e} |0| < \alpha_{\rm e} |1| < \alpha_{\rm e}$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

• $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\flat w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
 - $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

$$\bullet w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\bullet \quad w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \; .$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \ .$

 $A^{T}\hat{\boldsymbol{y}} \ge \boldsymbol{c} \Rightarrow \hat{\boldsymbol{x}}^{T}A^{T}\hat{\boldsymbol{y}} \ge \hat{\boldsymbol{x}}^{T}\boldsymbol{c} \ (\hat{\boldsymbol{x}} \ge 0)$ $A\hat{\boldsymbol{x}} \le \boldsymbol{b} \Rightarrow \boldsymbol{y}^{T}A\hat{\boldsymbol{x}} \le \hat{\boldsymbol{y}}^{T}\boldsymbol{b} \ (\hat{\boldsymbol{y}} \ge 0)$ This choice

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{\gamma} \ge c \Rightarrow \hat{x}^T A^T \hat{\gamma} \ge \hat{x}^T c \ (\hat{\chi} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$\begin{aligned} A^T \hat{y} &\geq c \Rightarrow \hat{x}^T A^T \hat{y} \geq \hat{x}^T c \ (\hat{x} \geq 0) \\ A \hat{x} &\leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0) \end{aligned}$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$$
$$A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$$
$$A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

 $\max\{c^T x \mid Ax = b, x \ge 0\}$

Primal:

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$
$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{[b^T - b^T]y \mid [A^T - A^T]y \ge c, y \ge 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$
$$= \min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

5.2 Simplex and Duality

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T y' \mid A^T y' \ge c\right\}$$

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (Ax^{*})^{T} y^{*} = (A_{B} x_{B}^{*})^{T} y^{*}$ $= (A_{B} x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x_{B}^{*})^{T} y^{*}$ $= (A_{B} x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^{*} = (A_{B}^{-1})^{T} c_{B} \text{ is solution to the dual } \min\{b^{T} y | A^{T} y \ge c\}.$ $b^{T} y^{*} = (A x^{*})^{T} y^{*} = (A_{B} x^{*}_{B})^{T} y^{*}$ $= (A_{B} x^{*}_{B})^{T} (A^{-1}_{B})^{T} c_{B} = (x^{*}_{B})^{T} A^{T}_{B} (A^{-1}_{B})^{T} c_{B}$ $= c^{T} x^{*}$

Hence, the solution is optimal.

9. Jul. 2022 84/116

5.3 Strong Duality

 $P = \max\{c^T x \mid Ax \le b, x \ge 0\}$

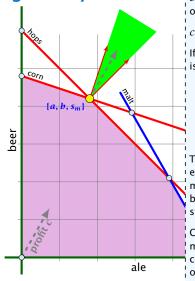
 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

 $n_{ar{A}}=n_A$, $m_{ar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T \gamma \mid \bar{A}^T \gamma = c, \gamma \ge 0\}.$$

5.3 Strong Duality



If we have a conic combination y of c then $b^T y$ is an upper bound of the profit we can obtain (weak duality):

$$c^T x = (\bar{A}^T y)^T x = y^T \bar{A} x \le y^T \bar{b}$$

If x and y are optimal then the duality gap is 0 (strong duality). This means

$$0 = c^T x - y^T \bar{b}$$
$$= (\bar{A}^T y)^T x - y^T \bar{b}$$
$$= y^T (\bar{A}x - \bar{b})$$

The last term can only be 0 if y_i is 0 whenever the *i*-th constraint is not tight. This means we have a conic combination of c by normals (columns of \tilde{A}^T) of *tight* constraints.

Conversely, if we have x such that the normals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.

The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

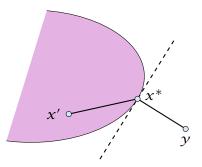
Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

(without proof)

Lemma 35 (Projection Lemma)

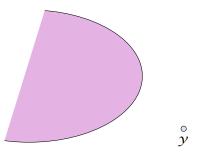
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



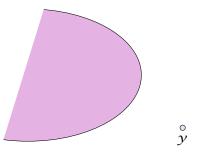
• Define f(x) = ||y - x||.

We want to apply Weierstrass but X may not be bounded.

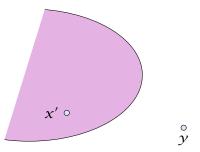
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



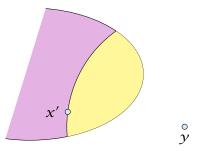
- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



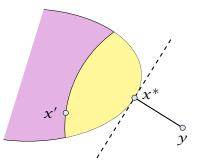
- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ► Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ► Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



5.3 Strong Duality

9. Jul. 2022 90/116

5.3 Strong Duality

9. Jul. 2022 91/116

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 $\|y - x^*\|^2$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

5.3 Strong Duality

9. Jul. 2022 91/116

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

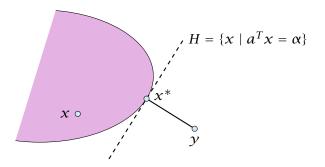
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 36 (Separating Hyperplane)

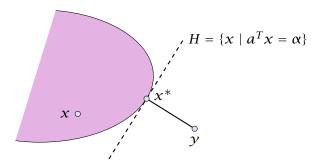
Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha$ for all $x \in X$)

• Let $x^* \in X$ be closest point to y in X.

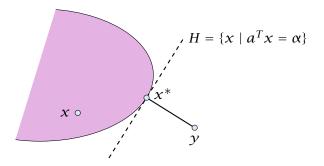
- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

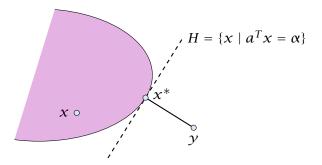


- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.

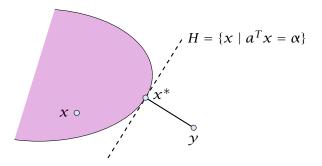
Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$



5.3 Strong Duality

9. Jul. 2022 93/116

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

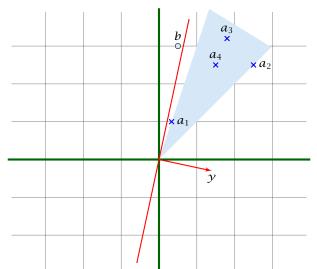
- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \leq 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

```
Rewrite the conditions:

1. \exists x \in \mathbb{R}^n with \begin{bmatrix} A & I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0

2. \exists y \in \mathbb{R}^m with \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0
```


Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax \leq b$, $x \geq 0$

2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w .

 $z \leq w$: follows from weak duality

- $z \leq w$: follows from weak duality
- $z \ge w$:

- $z \leq w$: follows from weak duality
- $z \ge w$:
- We show $z < \alpha$ implies $w < \alpha$.

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$			
s.t.	Ax	\leq	b
	$-c^T x$	\leq	$-\alpha$
	x	\geq	0

 $z \leq w$: follows from weak duality

 $z \ge w$:

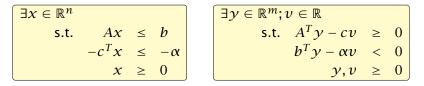
We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n \\ \text{s.t.} \quad Ax \leq b \\ -c^T x \leq -\alpha \\ x \geq 0 \end{cases} \qquad \begin{array}{c} \exists y \in \mathbb{R}^m; v \in \mathbb{R} \\ \text{s.t.} \quad A^T y - cv \geq 0 \\ b^T y - \alpha v < 0 \\ y, v \geq 0 \end{array}$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.



From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible.

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$

s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

- Hence, there exists a solution y, v with v > 0.
- We can rescale this solution (scaling both y and v) s.t. v = 1.
- Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1. Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- - We can prove this by providing an optimal basis for the duality
- A verifier can check that the associated dual solution fulfills

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.

A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \leq y^{*T} A x^* \leq b^T y^*$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (\mathcal{Y}^{T} A - c^{T})_{j} \mathbf{x}_{j}^{*} = 0$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (\mathcal{Y}^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Brewer: find mix of ale and beer that maximizes profits

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min	480 <i>C</i>	+	160H	+	1190M	
s.t.	5 <i>C</i>	+	4H	+	35 <i>M</i>	≥ 13
	15 <i>C</i>	+	4H	+	20 <i>M</i>	≥ 23
					C, H, M	≥ 0

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Brewer: find mix of ale and beer that maximizes profits

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

1	1190M	+	160H	+	480 <i>C</i>	min
1 ≥	35 <i>M</i>	+	4H	+	5 <i>C</i>	s.t.
1 ≥	20 <i>M</i>	+	4H	+	15 <i>C</i>	
1 ≥	C, H, M					

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T) y \\ \text{s.t.} & A^T y \geq c \\ & y \geq 0 \end{array}$$

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/116

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T) y \\ \text{s.t.} & A^T y \geq c \\ & y \geq 0 \end{array}$$

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/116

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

5.4 Interpretation of Dual Variables

9. Jul. 2022 106/116

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

$$\begin{array}{ccc} \min & (b^T + \epsilon^T)y \\ \text{s.t.} & A^Ty & \geq c \\ & y & \geq 0 \end{array}$$

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. com) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corr) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

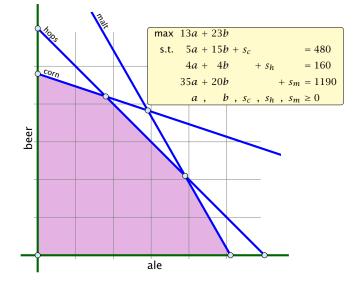
Interpretation of Dual Variables

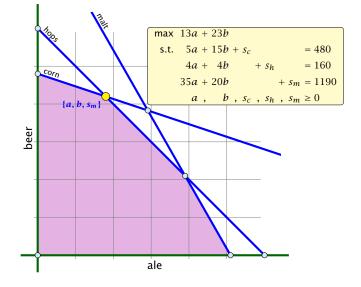
If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

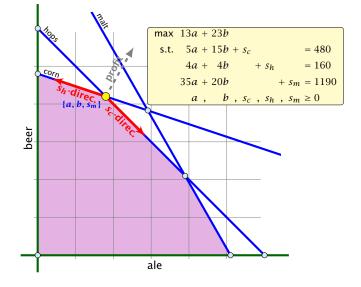
Therefore we can interpret the dual variables as marginal prices.

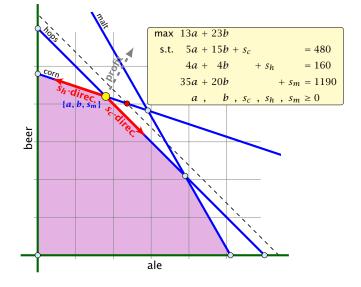
Note that with this interpretation, complementary slackness becomes obvious.

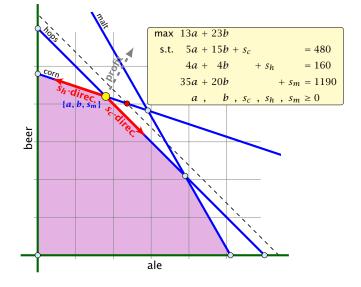
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

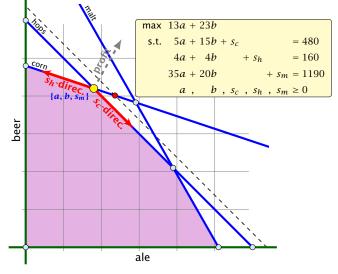




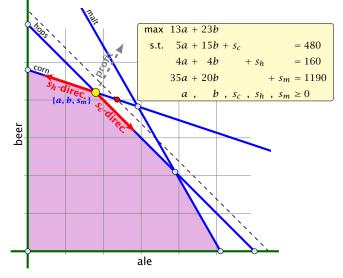








The change in profit when increasing hops by one unit is $= c_B^T A_B^{-1} e_h$.



The change in profit when increasing hops by one unit is

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{Y}^*} e_h.$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

 $0 \leq f_{xy} \leq c_{xy}$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

9. Jul. 2022 110/116

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

 $0 \leq f_{xy} \leq c_{xy}$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \ .$$

(flow conservation constraints)

Definition 43 The value of an (s,t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem: Find an (s,t)-flow with maximum value.

5.5 Computing Duals

9. Jul. 2022 111/116

Definition 43 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

max		$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
s.t.	$\forall (z, w) \in V \times V$	f_{zw}	\leq	C_{ZW}	ℓ_{zw}
	$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz}$			
		f_{zw}	\geq	0	

max		$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
s.t.	$\forall (z, w) \in V \times V$	f_{zw}	\leq	C_{ZW}	ℓ_{zw}
	$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz}$	=	0	p_w
		f_{zw}	\geq	0	

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	\geq	0
	$f_{sy}(y \neq s,t)$:	$1\ell_{sy}$ $+1p_y$	\geq	1
	$f_{xs} (x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	-1
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	\geq	0
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}-1p_x$	\geq	0
	f_{st} :	$1\ell_{st}$	\geq	1
	f_{ts} :	$1\ell_{ts}$	\geq	-1
		ℓ_{xy}	≥	0

5.5 Computing Duals

5.5 Computing Duals

9. Jul. 2022 113/116

with $p_t = 0$ and $p_s = 1$.

5.5 Computing Duals

9. Jul. 2022 114/116

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t(where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality ($d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t)$).

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

