16.1 MAXSAT

Problem definition:

- n Boolean variables

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.

16.1 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.

16.1 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

$E[W]$

$$
E[W]=\sum_{j} w_{j} E\left[X_{j}\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j}
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j} \\
& \geq \frac{1}{2} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}
$$

| \max | | $\sum_{j} w_{j} z_{j}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall j$ | $\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)$ | $\geq z_{j}$ |
| | $\forall i$ | y_{i} | $\in\{0,1\}$ |
| | $\forall j$ | z_{j} | ≤ 1 |

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Lemma 84 (Geometric Mean \leq Arithmetic Mean)
For any nonnegative a_{1}, \ldots, a_{k}

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
f(\lambda)=f((1-\lambda) 0+\lambda 1)
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1)
\end{aligned}
$$

for $\lambda \in[0,1]$.

Definition 85

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 86
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i} \\
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}} \\
& \leq\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} .
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

$E[W]$

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right]
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]
\end{aligned}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \text { OPT }
\end{aligned}
$$

MAXSAT: The better of two

Theorem 87
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
E\left[\max \left\{W_{1}, W_{2}\right\}\right]
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \quad \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E\left[\max \left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}]
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to $1 /$ true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

Theorem 88
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]$

$$
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\
& \leq 4^{-z_{j}}
\end{aligned}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence, $\operatorname{Pr}\left[C_{j}\right.$ satisfied $]$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0, 1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right]
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j}
$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} \mathrm{OPT}
$$

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Can we do better?
Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set

$$
z_{1}=z_{2}=z_{3}=z_{4}=1
$$

- hence, the LP has value 4 .

MaxCut

MaxCut

Given a weighted graph $G=(V, E, w), w(v) \geq 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Semidefinite Programming

$$
\begin{array}{rrr}
\hline \max / \mathrm{min} & & \sum_{i, j} c_{i j} x_{i j} \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k} x_{i j}=b_{k} \\
& x_{i j}=x_{j i} \\
& X=\left(x_{i j}\right) \text { is psd. } \\
& & \\
&
\end{array}
$$

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

[^0]
Vector Programming

$$
\begin{array}{rcc}
\max / \min & & \sum_{i, j} c_{i j}\left(v_{i}^{t} v_{j}\right) \\
\text { s.t. } & \forall k & \sum_{i, j, k} a_{i j k}\left(v_{i}^{t} v_{j}\right) \\
& v_{i} \in \mathbb{R}^{n}
\end{array}=b_{k}
$$

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$
\begin{aligned}
& \max \quad \frac{1}{2} \sum_{i, j} w_{i j}\left(1-y_{i} y_{j}\right) \\
& \forall i \\
& y_{i} \in\{-1,1\}
\end{aligned}
$$

This is exactly MaxCut!

Semidefinite Relaxation

| \max | | $\frac{1}{2} \sum_{i, j} w_{i j}\left(1-v_{i}^{t} v_{j}\right)$ | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| | $\forall i$ | $v_{i}^{t} v_{i}$ | $=1$ | |
| | $\forall i$ | v_{i} | $\in \mathbb{R}^{n}$ | |

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

Rounding the SDP-Solution

- Choose a random vector r such that $r /\|r\|$ is uniformly distributed on the unit sphere.
- If $r^{t} v_{i}>0$ set $y_{i}=1$ else set $y_{i}=-1$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Rounding the SDP-Solution

Choose the i-th coordinate r_{i} as a Gaussian with mean 0 and variance 1, i.e., $r_{i} \sim \mathcal{N}(0,1)$.

Density function:

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{x^{2} / 2}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left[r=\left(x_{1}, \ldots, x_{n}\right)\right] \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{x_{1}^{2} / 2} \cdot e^{x_{2}^{2} / 2} \cdot \ldots \cdot e^{x_{n}^{2} / 2} \mathrm{~d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n} \\
&=\frac{1}{(\sqrt{2 \pi})^{n}} e^{\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)} \mathrm{d} x_{1} \cdot \ldots \cdot \mathrm{~d} x_{n}
\end{aligned}
$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_{1} and e_{2} are independent and are normally distributed with mean 0 and variance 1 iff e_{1} and e_{2} are orthogonal.

Note that this is clear if e_{1} and e_{2} are standard basis vectors.

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection ($r^{\prime} /\left\|r^{\prime}\right\|$) is uniformly distributed on the unit circle within the hyperplane.

Rounding the SDP-Solution

- if the normalized projection falls into the shaded region, v_{i} and v_{j} are rounded to different values
- this happens with probability θ / π

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$

Rounding the SDP-Solution

- contribution of edge (i, j) to the SDP-relaxation:

$$
\frac{1}{2} w_{i j}\left(1-v_{i}^{t} v_{j}\right)
$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i j} \arccos \left(v_{i}^{t} v_{j}\right) / \pi$
- ratio is at most

$$
\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)} \geq 0.878
$$

Rounding the SDP-Solution

Rounding the SDP-Solution

Rounding the SDP-Solution

Theorem 91

Given the unique games conjecture, there is no α-approximation for the maximum cut problem with constant

$$
\alpha>\min _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)}
$$

unless $\mathrm{P}=\mathrm{NP}$.

[^0]: ' Note that wlog. we can assume that all variables appear in this matrix. Suppose ; we have a non-negative scalar z and want to express something like

 $$
 \sum_{i j} a_{i j k} x_{i j}+z=b_{k}
 $$

 ; where $x_{i j}$ are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell \ell}$, and additionally introduce constraints $x_{\ell r}=0$ and $x_{r \ell}=0$.

