Part V

Matchings

m Harald Réacke 428/488

Matching
» Input: undirected graph G = (V,E).

> M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum cardinality

14 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: O(mval(f*)) = O(mn).
> Capacity scaling: ©(m?2logC) = O(m?).
> Shortest augmenting path: @ (mn?).

For unit capacity simple graphs shortest augmenting path can be
implemented in time O (m/n).

m 14 Bipartite Matching via Flows
Harald Racke 430/488

15 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 84
A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m 15 Augmenting Paths for Matchings
Harald Racke 431/488




Augmenting Paths in Action

m 15 Augmenting Paths for Matchings
Harald Racke 432/488

Augmenting Paths in Action

‘m 15 Augmenting Paths for Matchings
Harald Racke 432/488

15 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M @ P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ @ M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |[M'| > |M| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’'. P is an alternating path.

m 15 Augmenting Paths for Matchings
Harald Ricke 433/488

15 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 85
Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M' = M & P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

:The above theorem allows for an easier implementation of an augment-1

1ing path algorithm. Once we checked for augmenting paths starting:
i from u we don’t have to check for such paths in future rounds. ;

m 15 Augmenting Paths for Matchings
Harald Racke 434/488




15 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

> If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (4).

> Let u’ be the first node on P’ that
isin P, and let e be the matching
edge from M’ incident to u'.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with Py.

> P; o P| is augmenting path in M (#). "~: i

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

/ Case 1:
@< Y 7y is free vertex not
@, u\\ @),

()
/ /

contained in T

you found
alternating path

o
[\

15 Augmenting Paths for Matchings

m Harald Racke

435/488

15 Augmenting Paths for Matchings

‘_I—I_Hm Harald Racke

436/488

How to find an augmenting path?

Construct an alternating tree.

/O O

even nodes
odd nodes

Case 2:

v is matched vertex
not in T; then
mate[y] ¢ T

L
TN

PEON
Q

grow the tree

» O O O O

DI—x

0
L%
.
‘e

©o—0

/\
O 0O d O O O

@)

How to find an augmenting path?

Construct an alternating tree.

()
/
u G 94
\J.... A
“
"-.... \
....
-

DL—x

even nodes
odd nodes

Case 3:
v is already contained
in T as an odd vertex

ignore successor y

® O O O O

/\
O 0O/ 0O O O

O

15 Augmenting Paths for Matchings

m Harald Racke

437/488

15 Augmenting Paths for Matchings

lm Harald Racke

438/488




How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

()
/

Case 4:
v is already contained
in T as an even vertex

0 @

3
.
*
.
‘e
*
L

can’t ignore y

v
]
“a,

@& O O O O

does not happen in
bipartite graphs

o
[\

O

15 Augmenting Paths for Matchings

m Harald Réacke 439/488

:The lecture slides |

Algorithm 48 BiMatch (G, match) ' contain a step by 1
1: for x € V do mate[x] < O; 1 step explanation. |
2: v < 0; free — n;

i wh:,le‘_ﬁ;eizl landr <n do graph G = (S US'.E)
5 if mate[r] =0 then S={1,...,n}

6 for i =1 to n do parent[i’'] — 0 S ={1,...,n'}
7 Q — ; Q.append(r); aug — false;

8: while aug = false and Q + @ do

9: x < Q.dequeue();

10: for y € A, do

11: if mate[y] =0 then

12: augm(mate, parent, y);

13: aug - true;

14: free — free —1;

15: else

16: if parent[y] =0 then

17: parent[y] — x;

18: Q.enqueue(mate[y]);

16 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, > 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
> assume that [L| = |R| =n

» assume that there is an edge between every pair of nodes
L, r) evxV

> can assume goal is to construct maximum weight perfect
matching

16 Weighted Bipartite Matching

m Harald Racke 441/488

Weighted Bipartite Matching

Theorem 86 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, whereI'(S) denotes the set
of nodes in R that have a neighbour in S.

16 Weighted Bipartite Matching

lm Harald Racke 442/488




16 Weighted Bipartite Matching

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L]|.
> Let S denote a minimum cut and let Lg & L. N S and
Rs ¥ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Lg have to be in S, as
otherwise we would cut an edge of infinite capacity.
> This gives Rg > [T'(Ls)]|.
The size of the cutis |L| — |Lg| + |Rs].
> Using the fact that [T'(Ls)| > Ls gives that this is at least |L|.

v

‘m 16 Weighted Bipartite Matching
Harald Racke 444/488

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, € R
denote the weight of node v.

> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = w, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xv.

» Try to compute a perfect matching in the subgraph H(X). If
you are successful you found an optimal matching.

Algorithm Outline

Reason:

> The weight of your matching M* is

> Wy = D (Xu+x) =D xu

(u,v)yeM* (u,v)eM* v

> Any other perfect matching M (in G, not necessarily in H(x))

m 16 Weighted Bipartite Matching
Harald Racke 445/488

has
> waw = D, (Xutxw) =D Xy .
(u,v)eM (u,v)eM v
‘m 16 Weighted Bipartite Matching
Harald Ricke 446/488




Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(X).

Idea: reweight such that:
> the total weight assigned to nodes decreases

> the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

m 16 Weighted Bipartite Matching
Harald Racke 447/488

Changing Node Weights

Increase node-weights in I'(S) by +6, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from Sto R —T'(S)
decrease in their weight. +0|I(S)

> Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S5)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R
m 16 Weighted Bipartite Matching
Harald Racke 448/488

Weighted Bipartite Matching

Edges not drawn have weight 0.

6
d=16=1
a
']
m 16 Weighted Bipartite Matching
Harald Racke 449/488

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R —T(S).

> Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

‘m 16 Weighted Bipartite Matching
Harald Ricke 450/488




Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

> This gives a polynomial running time.

m 16 Weighted Bipartite Matching
Harald Racke 451/488

How to find an augmenting path?

Construct an alternating tree.

O O
]

2 O O
\

O
L—
O

‘m 16 Weighted Bipartite Matching
Harald Ricke 452/488

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

> All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd|l = T (Veven)| < |Veven!, and all odd vertices are
saturated in the current matching.

m 16 Weighted Bipartite Matching
Harald Racke 453/488

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.
> In total we obtain a running time of O (n?).

» A more careful implementation of the algorithm obtains a
running time of O(n3).

‘m 16 Weighted Bipartite Matching
Harald Racke 454/488




How to find an augmenting path?

Construct an alternating tree.

~ even nodes
U
odd nodes

Case 4:
v is already contained

\ in T as an even vertex

0 ¢
(ON

can’t ignore y

Thecyclew « y —x - w
is called a blossom.

w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

17 Maximum Matching in General Graphs

m Harald Racke

455/488

Flowers and Blossoms

Definition 87
A flower in a graph G = (V,E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

> A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

> A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base of
the blossom.

17 Maximum Matching in General Graphs

‘_I—I_Hm Harald Réacke 456/488

Flowers and Blossoms

2 (4 ——(6 (8
3 (5 ——(D =9
(6 )=—(8—19)
O—O—E—"CO—=C
(OD=——(—1)

17 Maximum Matching in General Graphs

m Harald Racke

457/488

Flowers and Blossoms

Properties:
1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer ¢ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at 7).

17 Maximum Matching in General Graphs

lm Harald Ricke 458/488




Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

Flowers and Blossoms

m 17 Maximum Matching in General Graphs
Harald Ricke 459/488

()=—(8)—19
O—EO——~0O—<
O=—D—W)
‘m 17 Maximum Matching in General Graphs
Harald Ricke 460/488

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.

> Add a new (pseudo-)vertex b. The new vertex b is connected
to all vertices in V \ B that had at least one edge to a vertex
from B.

Shrinking Blossoms

> Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

> Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 17 Maximum Matching in General Graphs
Harald Racke 461/488

‘m 17 Maximum Matching in General Graphs
Harald Racke 462/488




Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

17 Maximum Matching in General Graphs

m Harald Racke 462/488

i Animation of Blossom Shrinking |
: algorithm is only available in the

Example: Blossom Algorithm

r lecture version of the slides.

17 Maximum Matching in General Graphs

‘_I—I_Hm Harald Racke

463/488

Correctness

Assume that in G we have a flower w.r.t. matching M. Let v be the
root, B the blossom, and w the base. Let graph G’ = G/B with
pseudonode b. Let M’ be the matching in the contracted graph.

Lemma 88

If G’ contains an augmenting path P’ starting at v (or the
pseudo-node containing v) w.r.t. the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

17 Maximum Matching in General Graphs

m Harald Racke 464/488

Correctness

Proof.
If P" does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ © ® P3@

17 Maximum Matching in General Graphs

lm Harald Racke

465/488




Correctness

> After the expansion £ must be incident to some node in the
blossom. Let this node be k.

» If k # w there is an alternating path P> from w to k that
ends in a matching edge.

» Pio (i,w) o P> o (k,¥) o P53 is an alternating path.
» If k = w then Py o (i,w) o (w,¥) o P3 is an alternating path.

m 17 Maximum Matching in General Graphs
Harald Ricke 466/488

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=r.

» The path v o P> o (k, ) o P3 is an alternating path.

‘m 17 Maximum Matching in General Graphs
Harald Ricke 467/488

Correctness

Lemma 89

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing v) to q w.r.t. M.

m 17 Maximum Matching in General Graphs
Harald Ricke 468/488

Correctness

Proof.
» If P does not contain a node from B there is nothing to prove.

> We can assume that v and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form Py o (i, j) o P2, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

‘m 17 Maximum Matching in General Graphs
Harald Ricke 469/488




Correctness

lllustration for Case 1:

O O O
% oy
() (D) ()
% %

m Harald Racke

17 Maximum Matching in General Graphs

470/488

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because » and
w are root and base of a blossom. Define M, = M & P3.

In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M. have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M. It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between » and g.

IThe lecture slides |
| contain a step by, !

Algorithm 49 search(r, found)

i step explanation. |

1: set A(i) — A(i) for all nodes i
2: found — false

3: unlabel all nodes;

4: give an even label to r and initialize list —
5:
6
7
8

while list + @ do
delete a node i from list
examine (i, found)
if found = true then return

{r}

Search for an augmenting path
starting at 7.

-The lecture slides |
| contain a step by, !
| step explanation. |

Algorithm 50 examine(i, found)
1: forall j € A(i) do

2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) - 1

6: found - true;
7

8

9

0

1

return

if j is matched and unlabeled then
pred(j) < i,
pred(mate(j)) < j;

10:
1 add mate(j) to list

Examine the neighbours of a node i




Algorithm 51 contract(i, j)

. trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O\U‘IAUJN—'

Contract blossom identified by
nodes i and j

17 Maximum Matching in General Graphs

m Harald Racke

474/488

Algorithm 51 contract(i, j)

. trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O\U‘ILUJN—'

Get all nodes of the blossom.

Time: O(m)

17 Maximum Matching in General Graphs

m Harald Racke

474/488

Algorithm 51 contract(i, j)

. trace pred-indices of i and j to identify a blossom B

create new node b and set A(D) — UxcpA(x)
label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)
form a circular double linked list of nodes in B
delete nodes in B from the graph

mU'I-hUJN—'

Identify all neighbours of b.
Time: O(m) (how?)

17 Maximum Matching in General Graphs

m Harald Racke

474/488

Algorithm 51 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)
form a circular double linked list of nodes in B
delete nodes in B from the graph

mU'I-hUJN—'

b will be an even node, and it has
unexamined neighbours.

17 Maximum Matching in General Graphs

m Harald Racke

474/488




Algorithm 51 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)
label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)
form a circular double linked list of nodes in B
delete nodes in B from the graph

A v A W N~

Every node that was adjacent to a node
in B is now adjacent to b

m 17 Maximum Matching in General Graphs
Harald Ricke

474/488

Algorithm 51 contract(i, j)

. trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O\U‘ILWN—'

Only for making a blossom
expansion easier.

m 17 Maximum Matching in General Graphs
Harald Racke 474/488

Algorithm 51 contract(i, j)

. trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxecpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

O\U‘IAUJN—'

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O (m).

m 17 Maximum Matching in General Graphs
Harald Racke

474/488

Analysis

> A contraction operation can be performed in time O (m).
Note, that any graph created will have at most m edges.

> The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

> There are at most n contractions as each contraction reduces
the number of vertices.

» The expansion can trivially be done in the same time as
needed for all contractions.

> An augmentation requires time @(n). There are at most n of
them.

> In total the running time is at most

n-(Omn) +On)) = O(mn?) .

m 17 Maximum Matching in General Graphs
Harald Ricke 475/488




i Animation of Blossom Shrinking |

: algorithm is only available in the |

i lecture version of the slides. |

_______________________

Example: Blossom Algorithm

m 17 Maximum Matching in General Graphs
Harald Ricke 476/488

A Fast Matching Algorithm

Algorithm 52 Bimatch-Hopcroft-Karp(G)

" M-

2: repeat

3 let P = {Pq,...,Py} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5 M~M&PLU---UPy)

6: until ? = o

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

‘m 18 The Hopcroft-Karp Algorithm
Harald Ricke 477/488

Analysis Hopcroft-Karp

Lemma 90
Given a matching M and a matching M* with |M*| — |M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

> Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

> The graph contains k ¢ |M*| — |[M| more red edges than
blue edges.

> Hence, there are at least k components that form a path
starting and ending with a red edge. These are augmenting
paths w.r.t. M.

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 478/488

Analysis Hopcroft-Karp

> Let P1,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

>» M “MoPLU---UPy)=M&P &---aPy.
> Let P be an augmenting path in M.

Lemma 91
ThesetA< Mo (M ©P)=(PyU---UPy) ®P contains at least
(k + 1) edges.

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 479/488




Analysis Hopcroft-Karp

Proof.

> The set describes exactly the symmetric difference between
matchings M and M’ @ P.

> Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M’| = |M| + k + 1.

> Each of these paths is of length at least £.

Analysis Hopcroft-Karp

Lemma 92

P is of length at least { + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> If P does not intersect any of the Py, ..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {P1,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k{ + |P| — 1.

» The lower bound on |A| gives (k + 1)f < |A| < k€ + |P| -1,
and hence |P| =¥ + 1.

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 480/488

‘m 18 The Hopcroft-Karp Algorithm
Harald Ricke 481/488

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ¢ edges

then the cardinality of the maximum matching is of size at most

M|+ 445

Proof.

The symmetric difference between M and M* contains |[M*| — | M|

vertex-disjoint augmenting paths. Each of these paths contains at
|V]

least £ + 1 vertices. Hence, there can be at most 71 of them.

Analysis Hopcroft-Karp

Lemma 93
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

> After iteration [/[V|] the length of a shortest augmenting
path must be at least [/|V]] +1 = /|V].

» Hence, there can be at most |V|/(+/|V]| + 1) < +/|V]
additional augmentations.

m 18 The Hopcroft-Karp Algorithm
Harald Racke 482/488

'm 18 The Hopcroft-Karp Algorithm
Harald Riacke 483/488




Analysis Hopcroft-Karp

Lemma 94
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).

construct a “level graph” G':

> construct Level 0 that includes all free vertices on left side L
construct Level 1 containing all neighbors of Level 0
construct Level 2 containing matching neighbors of Level 1

construct Level 3 containing all neighbors of Level 2

vV v.v. v Vv

stop when a level (apart from Level 0) contains a free vertex
can be done in time O(m) by a modified BFS

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 484/488

Analysis Hopcroft-Karp

> a shortest augmenting path must go from Level 0 to the last
layer constructed

> it can only use edges between layers
> construct a maximal set of vertex disjoint augmenting path
connecting the layers

> for this, go forward until you either reach a free vertex or you
reach a “dead end” v

> if you reach a free vertex delete the augmenting path and all
incident edges from the graph

> if you reach a dead end backtrack and delete v together with
its incident edges

‘m 18 The Hopcroft-Karp Algorithm
Harald Ricke 485/488

Analysis Hopcroft-Karp

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is @ (mn)
» a search (successful or unsuccessful) takes time O (n)

> a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn?).

'm 18 The Hopcroft-Karp Algorithm
Harald Racke 487/488




Analysis for Unit-capacity Simple Networks

cost for searches during a phase is @ (m)

> an edge/vertex is traversed at most twice

need at most @ (/n) phases

» after ./n phases there is a cut of size at most \/n in the
residual graph

> hence at most /n additional augmentations required

Time: O(m/n).

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 488/488




	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm


