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an asymptotic classification of the running time, that ignores
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> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
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We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.
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Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.

> O(f) ={gl3Ic>03ngeNgVn=np: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)
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> Q(f) ={gl3c>03angeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> Of) =Q(f)nof)
(functions that asymptotically have the same growth as f)

> o(f) ={glVe>03ngeNgVn=ng: [gln) <c-f(n)]}
(set of functions that asymptotically grow slower than f)

> w(f)={g|Vc>03IngeNyVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow faster than f)
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N
to Ry .

gn)
f(n)

> geO(f): Os}tilrolo < o

1 o Note that for the version of the Lan-:
: dau notation defined here, we as-:
| sume that f and g are positive func-:
: tions. :
| © There also exist versions for arbitrary :
1 functions, and for the case that the,
i limes is not infinity. ]
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Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

| 2. In this context f(n) does not mean the func- | : 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a, to ignore constant factors. For example theI
i shorthand for the function itself (leaving out : medlan of n elements can be determined us-

: domain and codomain and only giving the : ing 2n + 0(n) comparisons. |
1

rule of correspondence of the function). '
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1. People write f = O(g), when they mean f € O(g). This is

not an equality (how could a function be equal to a set of
functions).
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n° +3n+1=2n°+0(n)
Here, ©(n) stands for an anonymous function in the set ®(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.
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Asymptotic Notation in Equations
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Asymptotic Notation in Equations

How do we interpret an expression like:
2n® +0(n) = 0(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € ©(n?)
that makes the expression true.
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Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!
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. L .  The @(i)-symbol on the left rep-i
Asymptotlc Notation in Eq uations | resents one anonymous function |

Vf N = R*, and then 3, f(i) is |
How do we interpret an expression like: | computed.

> 03) =0(n?)

i=1
Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O(l)+0R2)+---+0(n-1)+0B(n)

.®(1)+®(2)+ -+0(n-1)+0(n) does'
not really have a reasonable interpreta- |
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Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n’-0(n) + O(logn)

represents

{fiN=R"| f(n) =n? - g(n) +h(n)

| Recall that according to the previous |
' slide e.g. the expressions ZZL 1 0(i) and l
I Z”/Z O(i) + X1 241 O(i) generate dif- |
.ferent sets. 1
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Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement
btw. two sets:

n®-0m) +0logn) = O(n?)

represents

n%-0m) +0logn) < O(n?)
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Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c
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Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(g(n)) =0(f(n) +g(n))
O(f(n)) -0(gn)) =0(f(n)-gn))

> O(f(n)) + O(g(n)) = Omax{f(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)}).

v
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Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.
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» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.
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Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

> In general logn = log, n, i.e., we use 2 as the default base
for the logarithm.
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Laufzeiten

Funktion Eingabelinge n
f(n) 10 102 103 104 10° 1086 107 108
logn 33ns 66ns| 0.1ps| O0.1ps| 0.2us| 0.2ps| 0.2us| 0.3ps
yn 32ns| 0.1ps| 0.3ps lps 3.1ps 10ps 31ps| 0.1ms
n 100ns lps 10ps| 0.1ms 1ms 10ms 0.1s 1s
nlogn 0.3ps| 6.6ps| 0.Ims| 1.3ms 16ms 0.2s 2.3s 27s
nd/2 0.3pus| 10ps| 0.3ms| 10ms 0.3s 10s| 5.2min 2.7h
n? lpus| 0.1ms| 10ms 1s| 1.7min 2.8h 11d 3.2y
n3 10ps| 10ms 10s 2.8h| 115d| 317y| 3.2-10%y
1.1" 26ns| 0.1ms| 7.8-10%%y
2n 10ps| 4-10'y
n! 36ms| 3-10142y

Alter des Universums: ca. 13.8 - 10%

1 Operation = 10ns; 100MHz



Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
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In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
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Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
» Algorithm B. Running time g(n) = log” n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.
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Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several
parameters (e.g., nodes and edges of a graph (n and m)).
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Multiple Variables in Asymptotic Notation

Example 2

» fIN-R{, f(n,m)=1lundg:N—-Rj,gn,m) =n-1
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Multiple Variables in Asymptotic Notation

Example 2

» fIN-R{, f(n,m)=1lundg:N—-Rj,gn,m) =n-1
then f = O(g) does not hold
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