
4 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

15. Dec. 2022

Harald Räcke 3/23



4 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 3/23



4 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 3/23



4 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 3/23



4 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 3/23



Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 4/23



Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 4/23



Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 4/23



Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 4/23



Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 4/23



Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 5/23



Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 5/23



Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 5/23



Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 5/23



Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 5/23



Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).



Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).



Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).



Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 7/23



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 7/23



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 7/23



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 8/23



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 8/23



Asymptotic Notation in Equations

How do we interpret an expression like:

n∑
i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 9/23



Asymptotic Notation in Equations

How do we interpret an expression like:

n∑
i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 9/23



Asymptotic Notation in Equations

How do we interpret an expression like:

n∑
i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 9/23



Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

{
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
}

Recall that according to the previous
slide e.g. the expressions

∑n
i=1O(i) and∑n/2

i=1 O(i)+
∑n
i=n/2+1O(i) generate dif-

ferent sets.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 10/23



Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement

btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

Note that the equation does not hold.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 11/23



Asymptotic Notation

Lemma 1

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c

ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 12/23



Asymptotic Notation

Lemma 1

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))

ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 12/23



Asymptotic Notation

Lemma 1

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))

ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})
The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 12/23



Asymptotic Notation

Lemma 1

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 12/23



Asymptotic Notation

Lemma 1

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 12/23



Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 13/23



Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 13/23



Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 13/23



Funktionen

10 20 30 40 50 60 70 80 90

2

4

6

8

log2n√
n

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 14/23



Funktionen

10 20 30 40 50 60 70 80 90

20

40

60

80

log2n√
n
n

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 15/23



Funktionen

10 20 30 40 50 60 70 80 90

200

400

600

log2n√
n
n

n log(n)

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 16/23



Funktionen

10 20 30 40 50 60 70 80 90

2 · 103

4 · 103

6 · 103

8 · 103

1 · 104

log2n√
n
n

n log(n)
n2

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 17/23



Funktionen

10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1
·106

√
n
n

n log(n)
n2

n3

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 18/23



Funktionen

10 20 30 40 50 60 70 80 90

1

2

3

4

5
·1029

n
n log(n)
n2

n3

2n

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 19/23



Laufzeiten

Funktion Eingabelänge n

f(n) 10 102 103 104 105 106 107 108

logn 33ns 66ns 0.1µs 0.1µs 0.2µs 0.2µs 0.2µs 0.3µs
√
n 32ns 0.1µs 0.3µs 1µs 3.1µs 10µs 31µs 0.1ms

n 100ns 1µs 10µs 0.1ms 1ms 10ms 0.1s 1s

n logn 0.3µs 6.6µs 0.1ms 1.3ms 16ms 0.2s 2.3s 27s

n3/2 0.3µs 10µs 0.3ms 10ms 0.3s 10s 5.2min 2.7h

n2 1µs 0.1ms 10ms 1s 1.7min 2.8h 11d 3.2y

n3 10µs 10ms 10s 2.8h 115d 317y 3.2·105y

1.1n 26ns 0.1ms 7.8·1025y

2n 10µs 4·1014y

n! 36ms 3·10142y

1 Operation = 10ns; 100MHz

Alter des Universums: ca. 13.8 · 109y



Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:

ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 21/23



Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:

ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 21/23



Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).

ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 21/23



Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 21/23



Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 21/23



Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

ñ O(f ) = {g | ∃c > 0 ∃N ∈ N0 ∀~n with ni ≥ N for some i :

[g(~n) ≤ c · f(~n)]}
(set of functions that asymptotically grow not faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 22/23



Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

ñ O(f ) = {g | ∃c > 0 ∃N ∈ N0 ∀~n with ni ≥ N for some i :

[g(~n) ≤ c · f(~n)]}
(set of functions that asymptotically grow not faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 22/23



Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

ñ O(f ) = {g | ∃c > 0 ∃N ∈ N0 ∀~n with ni ≥ N for some i :

[g(~n) ≤ c · f(~n)]}
(set of functions that asymptotically grow not faster than f )

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 22/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n

then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n

then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n

then: f = O(g)
ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23



Multiple Variables in Asymptotic Notation

Example 2

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n
then f = O(g) does not hold

4 Asymptotic Notation 15. Dec. 2022

Harald Räcke 23/23


	Asymptotic Notation

