
7 Augmenting Path Algorithms

Greedy-algorithm:

ñ start with f(e) = 0 everywhere
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

ñ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

ñ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

u v5|20
6|10

u v9
21
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Augmenting Path Algorithm

Definition 37

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 294/320



Augmenting Path Algorithm

Definition 37

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 294/320



Augmenting Paths
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Augmenting Paths
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Augmenting Path Algorithm

Theorem 38

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f ) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .
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Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

ñ Let f be a flow with no augmenting paths.

ñ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

ñ Since there is no augmenting path we have s ∈ A and t ∉ A.
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Augmenting Path Algorithm

val(f )

=
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second

exploits the fact that the flow along incoming edges must be 0 as

the residual graph does not have edges leaving A.
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Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.
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Lemma 40

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 41

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial
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Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
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How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.
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Overview: Shortest Augmenting Paths

Lemma 42

The length of the shortest augmenting path never decreases.

Lemma 43

After at most O(m) augmentations, the length of the shortest

augmenting path strictly increases.
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Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 44

The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m2n).

Proof.

ñ We can find the shortest augmenting paths in time O(m) via

BFS.

ñ O(m) augmentations for paths of exactly k < n edges.
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Shortest Augmenting Paths

Define the level `(v) of a node as the length of the shortest s-v
path in Gf (along non-zero edges).

Let LG denote the subgraph of the residual graph Gf that

contains only those edges (u,v) with `(v) = `(u)+ 1.

A path P is a shortest s-u path in Gf iff it is an s-u path in LG.
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In the following we assume that the residual graph Gf does not

contain zero capacity edges.

This means, we construct it in the usual sense and then delete

edges of zero capacity.
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Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation Gf changes as follows:

ñ Bottleneck edges on the chosen path are deleted.

ñ Back edges are added to all edges that don’t have back edges

so far.

These changes cannot decrease the distance between s and t.
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These changes cannot decrease the distance between s and t.
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Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the

shortest augmenting path strictly increases.

Let M denote the set of edges in graph LG at the beginning of a

round when the distance between s and t is k.

An s-t path in Gf that uses edges not in M has length larger than

k, even when using edges added to Gf during the round.

In each augmentation an edge is deleted from M.

Note that an edge cannot
enter M again during the
round as this would require
an augmentation along a
non-shortest path.
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Shortest Augmenting Paths

Theorem 45

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 46 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 310/320



Shortest Augmenting Paths

Theorem 45

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 46 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 310/320



Shortest Augmenting Paths

Theorem 45

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 46 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 310/320



Shortest Augmenting Paths

Theorem 45

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 46 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 310/320



Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve

(asymptotically) on the number of augmentations.

However, we can improve the running time to O(mn2) by

improving the running time for finding an augmenting path

(currently we assume O(m) per augmentation for this).
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Shortest Augmenting Paths

We maintain a subset M of the edges of Gf with the guarantee

that a shortest s-t path using only edges from M is a shortest

augmenting path.

With each augmentation some edges are deleted from M.

When M does not contain an s-t path anymore the distance

between s and t strictly increases.

Note that M is not the set of edges of the level graph but a subset

of level-graph edges.
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Suppose that the initial distance between s and t in Gf is k.

M is initialized as the level graph LG.

Perform a DFS search to find a path from s to t using edges from

M.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from M.
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Analysis

Let a phase of the algorithm be defined by the time between two

augmentations during which the distance between s and t strictly

increases.

Initializing M for the phase takes time O(m).

The total cost for searching for augmenting paths during a phase

is at most O(mn), since every search (successful (i.e., reaching t)
or unsuccessful) decreases the number of edges in M and takes

time O(n).

The total cost for performing an augmentation during a phase is

only O(n). For every edge in the augmenting path one has to

update the residual graph Gf and has to check whether the edge

is still in M for the next search.

There are at most n phases. Hence, total cost is O(mn2).
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How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.
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Capacity Scaling

Intuition:

ñ Choosing a path with the highest bottleneck increases the

flow as much as possible in a single step.
ñ Don’t worry about finding the exact bottleneck.
ñ Maintain scaling parameter ∆.
ñ Gf (∆) is a sub-graph of the residual graph Gf that contains

only edges with capacity at least ∆.
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Capacity Scaling

Algorithm 1 maxflow(G, s, t, c)
1: foreach e ∈ E do fe ← 0;

2: ∆← 2dlog2 Ce

3: while ∆ ≥ 1 do

4: Gf (∆)← ∆-residual graph

5: while there is augmenting path P in Gf (∆) do

6: f ← augment(f , c, P)
7: update(Gf (∆))
8: ∆← ∆/2
9: return f
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Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf

ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/320



Capacity Scaling

Lemma 47

There are dlogCe + 1 iterations over ∆.

Proof: obvious.

Lemma 48

Let f be the flow at the end of a ∆-phase. Then the maximum flow

is smaller than val(f )+m∆.

Proof: less obvious, but simple:

ñ There must exist an s-t cut in Gf (∆) of zero capacity.

ñ In Gf this cut can have capacity at most m∆.

ñ This gives me an upper bound on the flow that I can still add.
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Capacity Scaling

Lemma 49

There are at most 2m augmentations per scaling-phase.

Proof:

ñ Let f be the flow at the end of the previous phase.

ñ val(f∗) ≤ val(f )+ 2m∆
ñ Each augmentation increases flow by ∆.

Theorem 50

We need O(m logC) augmentations. The algorithm can be

implemented in time O(m2 logC).
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